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Abstract

Ford >1,s> 0 a(d,d+s)-graphis a graph whose degrees all lie in the interval
{d,d+1,...,d+s}. Forr > 1,a>0an(r,r +1)-factorof a graphG is a spanning
(r,r +a)-subgraph ofs. An (r,r 4+ a)-factorizationof a graphG is a decomposition
of G into edge-disjointr,r + a)-factors.

We prove a number of results abdutr +a)-factorizations ofd, d +s)-bipartite
multigraphs and ofd,d + s)-pseudographs (multigraphs with loops permitted).
For example, fot > 1 let3(r,s,a,t) be the least integer such thatdif> B(r,s,a,t)
then every(d,d + s)-bipartite multigraphG has an(r,r 4 a)-factorization intox
(r,r +a)-factors for at leadt different values ok. Then we show that

B(r,s,at)=r [tr‘k:_lw +({t—=1r.

Similarly, fort > 1 let (r,s,a,t) be the least integer such thatdf> y(r,s,a,t)
then each(d,d + s)-pseudograph has am,r + a)-factorization intox (r,r + a)-
factors for at least different values ok. We show that, ir anda are even, then
W(r,s,a,t) is given by the same formula.

We use this to give tight bounds fgi(r, s,a,t) whenr anda are not both even.
Finally, we consider the corresponding functions for multigraphs without loops,
and for simple graphs.

1 Introduction

Ford > 1,s> 0 a(d,d+s)-graphis a graph whose degrees all lie in the interval
{d,d+1,...,d+s}. Forr > 1,a> 0 an(r,r +a)-factorof a graphG is a spanning
(r,r +a)-subgraph of. An (r,r 4 a)-factorizationof a graphG is a decomposition
of Ginto edge-disjointr,r +a)-factors. An(r,r +a)-factorization is also described
less precisely as @egree-bounded factorizatiari G.

A survey paper dealing with degree-bounded factorizations was published by
Akiyama and Kano in 1985 [1], and recent surveys by Plummer [14, 15] also deal



with degree-bounded factorizations. Further important papers are by Akiyama and
Kano [2], Kano [10] and Cai [3]. For some recent work by the present author, see
[6], [7] and [8].

Bipartite multigraphs are the simplest kind of graph to consider for some fac-
torization problems; in particular, we are able without much difficulty to obtain
exact results for the questions about degree-bounded factorizations we consider
here. Pseudographare multigraphs in which loops are permitted; a loop counts
two towards the degree of the vertex it is on. There is a well-known connection
between Eulerian pseudographs and bipartite multigraphs. We exploit this con-
nection to deduce some exact and some approximate results about the analogous
guestions concerning certain kinds of degree-bounded factorizations of pseudo-
graphs. Finally we draw attention to the various implications for similar questions
about simple graphs and about multigraphs (without loops).

In Section 2 we discuss bipartite multigraphs. In Section 3 we apply the results
from Section 2 to pseudographs; direct application of the bipartite multigraph re-
sults leads to good results abdut + a)-factorizations ofd, d 4 s)-pseudographs
in the case whenandr + a are both even. In Section 4 we extend these results to
the cases whenandr + a are not both even. In Section 5 we examine the impli-
cation of these results for the analogous problems about multigraphs without loops
and about simple graphs.

Before concluding our introduction, let us draw attention to the following lemma
about(r,r 4+ a)-factorizations of d, d + s)-pseudographs.

Lemma 1. Letr be a positive integer and s and a be non-negative integers. Let G
be a(d,d + s)-pseudograph with at least one vertex of degree d and at least one
vertex of degree d s. Suppose that G has &nr + a)-factorization with exactly x

(r,r +a)-factors. Then

r+a -~ —r
Proof. Letv be a vertex of degreg+s. Thenx(r +a) > d(v) =d+s, sox > ?{;
Similarly, if wis a vertex of degred, thenxr < d(w) =d, sox < % O

2 Factorizing bipartite multigraphs

In our first theorem we show that, givahr,a,s, there is a large intervdl =
I(d,r,a,s) = [%;, 2] which has the property that there existd + s)-bipartite
multigraphsG which have(r,r + a)-factorizations intax (r,r 4 a)-factors if and
only if x € |, and a smaller interval = J(d,r,a,s) = [ 22, 4] which has the prop-
erty that all(d,d + s)-bipartite multigraphs have afm,r + a)-factorization intox
(r,r +a)-factors if and only ifx € J. Similar but more specialized results for sim-
ple graphs were proved in [6] and [8].

An invaluable tool in our proofs is the following easy result due to McDiarmid
[12] and de Werra [16, 17, 18]. For a gra@h anedge-colouringpf G is a map



¢©: E(G) — C, where( is a set of colours. An edge-colouriggof G is equitable
if
Ha(W)[=IB(V)| <1
for each vertew € V(G) and paira, € C, wherea(v) andB(v) are the sets of
edges incident withr coloureda andp respectively (a loop omcounts two towards
|a(v)| or |B(v)], respectively).
The result of McDiarmid and de Werra is:

Lemma 2. Let k be a positive integer and let G be a bipartite multigraph. Then G
has an equitable edge-colouring with k colours.

Ouir first theorem is:

Theorem 3. Let d, r and x be positive integers, and let a, s be non-negative inte-
gers.

(i) If
d+sS
r+a

then every(d,d + s)-bipartite multigraph has air,r + a)-factorization into

X (r,r +a)-factors.
[ d d+s) (d d+s}
€E|l—,— Ul -, —
r+a’'r+a rr

(i) If
then soméd, d + s)-bipartite multigraphs do and some do not have(an+
a)-factorization into x(r,r 4 a)-factors.

(iii) If
it

r+a r

d
X< —
r

then no(d,d + s)-bipartite multigraph has arr,r + a)-factorization into x
(r,r +a)-factors.

Proof. (i) Suppose thaff <x< g. Thenr <4 <4 <rta LetG be
a (d,d + s)-bipartite multigraph. By Lemma 25 has an equitable edge-
colouring withx colours. Since < % < d%s <r +a, it follows that each
colour class is afr,r + a)-factor of G. ThusG has an(r,r + a)-factorization
into x (r,r +a)-factors.

(i) Let xe [d,m)uc,m].
r+ar—4+a r r

First we show that there arel,d + s)-bipartite multigraphs which do have
an (r,r + a)-factorization intox (r,r +a)-factors. Since-d, < x < &= if



a > 1 then there are integess ands; with 0 < a; <aand 0< s; < ssuch

that q q d d
< +S1 <x< +&< +Ss

r+a " r+a+1- “r4+a
so thatx(r +a;) < d+s < x(r +a; +1). Therefore, there are integers
X1 > 0,% > 0 andx; + X = xsuch thai; (r +a;) + xo(r+a;+1) =d+s,
or, puttinga; + 1 = ay,

xi(r+a1) +X(r+a) =d+s

with 0 < a; < ap < a. This equation also holds & = 0 for somes; with
0< s <s, forthenx=d-+s;, sowe can have; =a, =0, X; =X, Xxo = 0.
LetF,...,F, be(r+aj)-regular bipartite multigraphs with the same bipar-
tition (V4,V2) of their vertex sets, and 18, . 1,...,Fx,1x, be(r +az)-regular

X

bipartite multigraphs also with the bipartitigh;,V>). Then letG = U F.

i=1
Then G is regular of degreér +a;)x; + (r +ax)xo =d+s;. ThusG is
a (d,d + s)-bipartite multigraph which has am,r + a)-factorization intox
(r,r +a)-factors.
Next we show that there ar@l, d + s)-bipartite multigraphs which do not
have an(r,r 4+ a)-factorization intax (r,r + a)-factors.

Firstly, letx € [-2- &%) and letG be a(d + s)-regular bipartite multigraph.

+a’r+a
The average degree over all the factors of the vertic&s iofa decomposi-
. . . d+s d+s
tion of G into x factors is%tS. But s - =Tr+a, so the
X (d+s9)/(r+a)

factors cannot all bér, r + a)-factors.

Secondly, lek € (9, d%s] and letG be ad-regular bipartite multigraph. The

average degree over all the factors of the vertice®& @ a decomposition

d d
d But — < -—— =r, so the factors cannot all be

of G into x factors is;. x <@/

(r,r +a)-factors.

(i) If x< % thenx(r +a) < d. Thus the union ok (r,r + a)-bipartite multi-
graphs has maximum degree less thaand so ndd, d + s)-bipartite multi-
graph has a decomposition inko(r,r + a)-factors. Similarly, ifx > dT“
thenxr > d+s. Thus the union ok (r,r + a)-bipartite multigraphs has min-
imum degree greater that+ s, so no(d,d + s)-bipartite multigraph has a
decomposition inte (r, r + a)-factors.

O]

We note the following two corollaries of Theorem 3.



Corollary 4. Letd,r,x be positive integers and let s be a non-negative integer. Then
every(d,d+ s)-bipartite multigraph has arr, r + a)-factorization into x(r,r +a)-
factors if and only if
d+sd

[r +a’ a] '
Corollary 5. Letd,r,x be positive integers and let s be a non-negative integer. Then
there is soméd,d + s)-bipartite multigraph which has afr,r + a)-factorization
into x (r,r +a)-factors if and only if

[ d d+s}
Xe|—,—]|.
r+a’ r

Next we apply Theorem 3. For positive integer,t and non-negative integer
s, let B(r,s,a,t) be the smallest integer such that, for each inteberp(r,s,a,t),

each(d,d + s)-bipartite multigraph has afr,r 4 a)-factorization withx (r,r 4 a)-
factors for at least different values ok. In Theorem 6 we evaluafr,s,a,t).

Theorem 6. Let integers ra,t be positive and s be non-negative. Then
B(r,s.at) = ~(tr 540+ (t— 1),

where cis such that ptr + s+ cand—-1<c<a-—2

Theorem 11 below about pseudographs seems to read exactly the same, but
note that there is even and we haveQ § < § — 1.

In [8] an exact result for simple graphs whes- 1 was given, and earlier, in [7]
a more restricted exact result wali= 1 andt = 1 was proved. The cases for simple
graphs whemm=1,t =1, sec {0,1} were dealt with in [6]. The first result on these
lines was the case= 1,t = 1, s= 0 for simple graphs; it was considered in 1984
and 1986 by Era [5] and Egawa [4], using methods which were different from ours.

Proof of Theorem 6.

() We show that )
B(r,sat) > 5<tr+s+c) +(t—=1Dr

wherea |tr+s+cand—1<c<a-2.
Letd = L(tr+s+c)+ (t—1)r — 1. We show that, for this value of, there

a

do not exist values of betweert2 and?. Then, by Theorem 3, it follows
that there existd,d + s)-bipartite multigraphs which do not hayer + a)-
factorizations withx (r,r + a)-factors fort different values ok.
We have

d_1 P!

. —a(tr+s+c)+(t .
and

d+s= (r+a)g(tr+s+c) —c—r—-1

5



(ii)

so that q 1 1
s r+c
ars_ —(tr+s+c)—i.
r+a a r+a

Sincec+1 < a it follows that the values ok which satisfy &= < x < ¢
are%(tr +s+c¢)+jfor0< j<t—2,sothere are indeed fewer thiasuch

values.

Next we show thaB(r,s,a,t) < Z(tr+s+c)+ (t—1)r.

Letd = Z(tr +s+c)+ (t — 1)r +-k, wherek > 0. We show that, in this case,
there do exist values ofx betweerf:2 and?. Then it follows from Theorem
3 that every(d,d + s)-bipartite multigraph has afm, r + a)-factorization into
X (r,r +a)-factors for at leadt values ofx.

First note that

1 k
—=—(tr+s+c)+t—1+4—
roa r

and that do 1 N «
S r4c
—— ==(tr+s+¢)——+——.
r+a a r+a r+4a

Therefore ifr ¢ > k> 0 then, since& +a>r+a—2>r 4 c, the values of

i d+s d;
xlying between=> and T include

1
(tr+s+c)+t—1

1
tr+s+c),...,—
a

5(
so there are at leastvalues ofx. We also note that

d d+s_t 1. 0t¢ ak

— + .
r r+a r+a r(r+a)

: Kk - d_d
Therefore if 2 + 25 > 1, i.e.k> (1-)r, thenf — 2 > t.

Sincec is an integer, ifc # —1 then all values ok > 0 satisfy one of the
inequalitiesk > (1 — a%)r andr +c > k> 0, so it follows from Theorem 3
thatB(r,s,a,t) < L(tr+s+c¢)+t—1.

Now consider further the case whers=- —1. If 0 <k <r — 1 then, as we just
showed, there aresuitable integral values of Now suppose thatr2i-a >
k>r. Then

d_1 1
T > 5(tr+s+c)+(t—l)+1: gl(tr+s+c)+t,
while
d+s 1 2r+a—k+c
— = Z(tr+s+c)+1————F—
r+a a r+a
1
< gl(tr+s+c)+1,



sincec= -1 < 2r+a—k. So in this case also there arsuitable integral
values ofx.

The set of inequalities @ k<r—-1(r <k<2r+a+cwhenc=-1) and
k> (1+ a%1)r cover all values ok > 0. Therefore it follows that

r

B(r,s,at) < —(tr+s+c)+t—1

o |

in this case also.

It now follows thatB(r,s,a,t) = L(tr +s+c) +t—1. O

T a

3 Factorizations of pseudographs

In this section we give analogues for certain kinds of pseudographs of Theorem 3
and similar theorems for multigraphs and simple graphs in [6], [7] and [8]. The ana-
logue of Theorem 3 is the following Theorem 7 ab2t 2r + 2a)-factorizations

of (2d,2d + 2s)-pseudographs.

Theorem 7. Let d, r and s be positive integers, and let s be a non-negative integer.

(i) If
d+s<
r+a—
then eveny2d, 2d + 2s)-pseudograph has r, 2r + 2a)-factorization into x

(2r,2r 4 2a)-factors.
[d d+s> (d d+s}
€|l—— JU[-,—
r+a'r+a r’or

(i) If
then somé2d, 2d + 2s)-pseudographs do and some do not hav@ra2r +
2a)-factorization into x(2r, 2r 4+ 2a)-factors.

(iii) If
it

r+a’ r

d
XSFa

then no(2d, 2d + 2s)-pseudograph has &2r, 2r + 2a)-factorization into x
(2r,2r + 2a)-factors.

It would be interesting to know to what extent Theorem 7 remains trueig 2
replaced with 241 or 2a is replaced by &+ 1; in particular, is Theorem 7 still
true if 2sis replaced by 2+ 1?

It is convenient to prove Theorem 7 by deducing it from Theorem 3 using
the following well-known connection between pseudographs and bipartite multi-
graphs.



Let G be a pseudograph. Pair off the verticesodf odd degree, and, for each
such paifx,y}, introduce an extra edgg. Call the pseudograph obtained this way
G*. Then each component & is Eulerian. Choose an Eulerian circuit of each
component ofG* and orient the edges in one direction round each such Eulerian
circuit. If V =V (G*) = {v1,V2,...,V } then construct a bipartite multigrapiG*)
with vertex setd) = {ug,...,u } andW = {wy,...,w }. If (W, w) is an oriented
edge ofG* then joinuy to wy in B(G*) by an edge. 1IG* has a loop oryy, then
join uy to wy in B(G*). Now from B(G*) construct a bipartite multigrapgh(G) by
deleting each edge &{(G") that corresponds to one of the extra edges introduced
above in formingG* from G. Clearly, given a pseudogra@ the extra edges, the
Eulerian circuits of the components, and the orientations can all usually be chosen
in many different ways, so there are many possibilitief@). They all have the
property thatdg ) (Ui) —dg(g)(Wi)| < 1 foreach, 1<i<r.

On the other hand, given a bipartite multigrépWith vertex set) = {uy,...,u }
andW = {wy,...,w; } satisfying the inequalityds(u;j) — dg(w;)| < 1, then it is
possible to obtain a pseudogra@iB). Given a pseudograpB, although there
are many different possibilities fd(G), reversing the construction will always
produce the original pseudogra@again. Thuss(B(G)) = G.

We now develop this connection in a more specific way (fr; 2r + 2a)-
factorizations.

Theorem 8. A pseudograph G has(@r, 2r + 2a)-factorization into X 2r, 2r + 2a)-
factors if and only if a corresponding bipartite multigrapti®) has an(r,r + a)-
factorization into x(r,r + a)-factors.

Proof. (i) SupposeG has a(2r, 2r + 2a)-factorization intox (2r, 2r + 2a)-factors
Fi,...,F For 1<i < x, construct a bipartite multigrapB(F) corresponding to
the factorfy. ThenB(F) is an(r,r +a)-bipartite multigraph an@B(F1),...,B(F))
is an(r,r + a)-factorization of a bipartite multigrapB(G).

(i) Suppose a bipartite multigraghhas an(r,r 4 a)-factorization intax (r,r +
a)-factors, sayF,...,F. For each, 1 <i <x, K corresponds to &é2r, 2r + 2a)-
pseudograpls(F), and(G(F1),...,G(F)) is a(2r, 2r + 2a)-factorization ofG(B).

O

We now turn to the proof of Theorem 7.

Proof of Theorem 7.

(i) Let G be a(2d,2d + 2s)-pseudograph and Iérjti—; <x< g From G we
may form a bipartite(d, d + s)-multigraphB(G). By Theorem 3(i)B(G)
has an(r,r + a)-factorization intox (r,r + a)-factors. By Theorem 8, this
corresponds to &2r, 2r + 2a)-factorization ofG into x (2r, 2r + 2a)-factors.

d d+s> g <d d+s

(i) Let xe [r+a’r+a o ] By Theorem 3(ii), soméd,d + s)-

bipartite multigraphs do and some do not have(an + a)-factorization

8



into x (r,r +a)-factors. LetB; andB; be (d,d + s)-bipartite multigraphs
which do, and do not, respectively, have @ + a)-factorization intox
(r,r +a)-factors. Then, by Theorem &(B;) andG(B,) are (2r,2r + 2a)-
pseudographs which do, and do not, respectively, h§2e 2r + 2a)-factorization
into x (2r, 2r + 2a)-factors.

d d+s

(i) Let x¢& [r+a’ r} . By Theorem 3(iii), nqd, d + s)-bipartite multigraph

has an(r,r + a)-factorization intox (r,r + a)-factors. Therefore, by Theo-
rem 8, no(2d, 2d + 2s)-pseudograph has(&r, 2r + 2a)-factorization intox
(2r,2r + 2a)-factors. O

We note the following corollaries to Theorem 7.

Corollary 9. Letd,r,x be positive integers and let s be a non-negative integer. Then
every(2d, 2d + 2s)-pseudograph has &2r, 2r + 2a)-factorization into x(2r,2r +
2a)-factors if and only if

e

r+a’r
Corollary 10. Let d,r,x be positive integers and let s be a non-negative inte-

ger. Then there is som@d, 2d + 2s)-pseudograph which has €r,2r 4 2a)-
factorization into x(2r, 2r + 2a)-factors if and only if

[ d d+s}
Xe|—,—]|.
r+a’ r

We now turn to the analogue of Theorem 6. For positive integarsand non-
negative integes, let Y(r,s,a,t) be the smallest integer such that, for each integer
d > y(r,s,a,t), each(d,d + s)-pseudograph has dnr + a)-factorization withx
(r,r +a)-factors for at leadt different values ok. For values of,s,a,t for which
W(r,s,a,t) takes no (finite) value, we pui(r,s,a,t) = oo.

Theorem 11. Let r,a,t be positive integers and s a non-negative integer. Letr, s
and a all be even. Let c be an even integer such that & s+ c and0 < g < %— 1.
Then "

w(r,s,at) = gl(tr +s+c¢)+(t—1)r.

Remark. Please notice that Theorem 11 and our whole account up to and including
Theorem 19 does not use anything peculiar to pseudographs. It could equally well
apply to multigraphs without loops, or to simple graphs. We shall make use of this
fact in Section 5 about multigraphs and simple graphs.

Whens € {0,1} then, as is explained in [6]p(r,s,1,1) = co. Some analo-
gous numbers in the cate- 1 for multigraphs (where loops are disallowed) were
studied by Akiyama and Kano [2], Kano [10] and Cai [3], and good results were
obtained. In [6] better bounds for multigraphs, although mostly not best possible,
inthe case=t =1,s€ {0, 1} were found. In [10] Kano showed that a multigraph



G is (2r,2r + 2a)-factorizable if and only ifG is a (2rm,2rm+ 2am)-multigraph
for some positive integen. (This follows from a similar theorem of de Werra (see
[11]) which says that a bipartite multigrais (r,r 4+ a)-factorizable if and only if
Gis an(rm,rm+ am)-bipartite multigraph for some positive integeyby using the
connection sketched out above between bipartite multigraphs and pseudographs; of
course, although not stated as such, Kano’s theorem holds for pseudographs, not
just for multigraphs.)

In order to prove Theorem 11 more easily, we introduce two further functions,
We(r,s,a,t) andy(r,s,a,t). Forintegers >1,r >2,a>2,s>0 andr, a, sall
even, we lete(r,s,a,t) be the least even integer such that, for each even integer
d > ye(r,s,at), each(d,d + s)-pseudograph has dnr + a)-factorization withx
(r,r +a)-factors for at least different values ok.

For integers,a,t > 1 ands > 0O, we lety(r,s,a,t) be the smallest integer such
that, for each integet > y(r,s,a,t), each(2d, 2d + 2s)-pseudograph has(@r, 2r +
2a)-factorization intox (2r, 2r + 2a)-factors for at leadt different values ok.

We first determine the value gfr,s,a,t).

Lemma 12. Let r;s,a,t be integers with r, a and t positive and s non-negative.
Then .
y(ra S, a7t> = a(tr +S+ C) + (t - l)l',

where cis such that ptr + s+cand—-1<c<a-—2

Proof. It follows from Theorem 8 that &2d, 2d + 2s)-pseudograpfs has a2r, 2r +
2a)-factorization intox (2r, 2r 4 2a)-factors if and only if a correspondingl,d +
s)-bipartite multigraptB(G) has an(r,r + a)-factorization intox (r,r + a)-factors.
Thereforey(r,s,a,t) = B(r,s,a,t). But, by Theorem &3(r,s,a,t) = L(tr +s+c)+
(t—21)r,wherea|tr+s+cand—1<c<a-2. O

From Lemma 12 we deduce immediately the following Lemma 13. Lemma 13
is essentially Lemma 12 rephrased.

Lemma 13. Letr,s a,t be integers with,ia,t positive and s non-negative. Letr, s,
and a all be even. Then

We(r,s,a,t) = %(tr +s+c¢)+(t—=1r,

where c is such that gtr + s+cand—1 <

Proof. From the definitions of(r,s,a,t) andWe
all even, then

—

r,s,a,t) it follows that, ifr,s, aare

r

= t
27 ) )7

N D

)

NI n

Pe(r,s,a,t) = 2y(

so by Lemma 12,

llJe(I’, Sa a7t) =

(r/2) /. r c r
22 ¢

S
2t2t) H-0;

10



wherec is such that(a/2) | t(r/2) + (s/2) 4+ (¢/2) (so thatc is also even) and
—-1< 5 <8 -2 Therefore

We(r,s.a) = ~(tr 540 + (t~ 1),

wherec s such that | tr +s+c (so thatcis even) and-1< § < § - 2. O

Lemma 14. Letr,s a,t be integers with,ia,t all positive and s non-negative. Let
r, s, and a all be even. Then

r,s,at ifalrt+s+c,0<S<8_2
o5+ 2.a.t) = We( ) | 252
-1

We(r,sat)+r ifalrt+s+c, 5
Proof. By Lemma 13
r
L|Je(r,s+2,a,t):a(tr+(s+2)+c’)+(t—l)r

wherea [tr + (s+2)+¢ and—1< § < 2 - 2. Putc* = ¢ +2. Then

I\)\Q’

Pe(r,s+2,at) = —(tr+(s+2)+(c"—2))+(t—1r
(tr+s+c)+(t—2r
wherea [tr +s+c and 0< $ < 2-1. If0< & < 22, then it follows from

Lemma 13 that -
We(r,s+2,a,t) = We(r,s,a,t).

If & =21, then puc™ =c* —a. Then

Pe(r,s+2,at) = —(trd+s+c4a)+(t—21Dr

==

(tr+s+ch)+(t—1r+r

wherea | tr +s+c* and% = —1. Therefore, by Lemma 13, in this case we have
Pe(r,s+2,a,t) = YPe(r,s,a,t) +r.
O

By definition, whenr,s,a are all even, ifd is EVEN andd > e(r,s,a,t)
then each(d,d + s)-pseudograph has &m,r + a)-factorization intox (r,r + a)-
factors fort different values ok, but Y(r,s,a,t) has the EXTRA property that if
d is ODD andd > y(r,s,a,t) then each(d,d + s)-pseudograph has dnr + a)-
factorization intox (r,r + a)-factors fort different values ok. Thus it is clear that
(r,s,a,t) > We(r,s,at) — 1 whenr,s,a are all even. We note that Theorem 11
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tells us that, except when# —1, Ji(r,s,a,t) = Ye(r,s,a,t), but when§ = —1 then
Y(r,s,at) =We(r,s,at)+r.

Proof of Theorem 11If d > ye(r,s+2,a,t) and ifd is even, then anfd, d + s+ 2)-
pseudograph has &nr + a)-factorization withx (r,r 4 a)-factors fort different
values ofx. If d > Ye(r,s+2,a,t) andd is odd, thend — 1 is even and anyd —
1,(d — 1) + s+ 2)-pseudograph is &’,d’ + s+ 2)-pseudograph for some even
d’ > Ye(r,s+2,a,t), and so has afr,r + a)-factorization withx (r,r + a)-factors
for t different values ok. Thusy(r,s,a,t) < We(r,s+2,a,t).

Now let d = e(r,s+ 2,a,t) — 1 and consider a pseudogra@h= G; U Gy,
whereV (G1) NV (Gz) = 0, Gy is a regular pseudograph of degie- s, and G,
is a regular pseudograph of degkeAny (r,r + a)-factorization ofG contains an
(r,r +a)-factorization ofG; and an(r,r 4 a)-factorization ofG,.

By Lemma 14 We(r,s+ 2,a,t) = We(r,S,a,t) or Ye(r,s,a,t) +r. Suppose first
that We(r,s+ 2,a,t) = We(r,s,a,t). Leta|rt + s+ c where, in accordance with
Lemma 14, < § < § — 2. ConsidelG;. Then

d 1 1
—=—(tr+s+c¢c)+(t—-1)— -
=t hsto (-1 -,
so the number ofr,r + a)-factors ofG; (and therefore3) could have is at most

L(tr +s+c)+ (t—2). Now consideiG,. Then

d+s 1 1, 5 (t—2r 1 S
= —(tr*+sr+cr)+ - +
r+a (r+a)a r+a r+a r+a
1 tr(r+a) s(r+a) c(r+a
_ (+a), srta) crta) =
(r+a) a a a
1 r+1+c
= —(tr+s+c)— .
a r+a

+1+c
r+a
the number ofr,r + a)-factors in any(r,r + a)-factorization is at Ieas;(tr +s+
c). Therefore the number of different valuesofor which G has an(r,r + a)-
factorization withx (r,r +a)-factors is at most— 1 < t.

Now suppose thape(r,s+2,a,t) = Pe(r,s,a,t) +r. Leta|rt +s+c where,
again in accordance with Lemma ]gl,: —1. Then

. . r
Since 0< § < § -2, itfollows thatr + 1+c < r+aso that < 1. Therefore

d 1 1

—=—(tr+s+c¢)+t——,

roa r
so the number ofr,r -+ a)-factorsG; could have is at mos}(tr +s+c) +t— 1.
Now consideiG,. Then

d+s 1 l+c
—— = —(tr+s+¢)— ——
r+a a r+a

12



where§ = —1. Then 4-c= -1 so—r%g > 0. Therefore the number ¢f,r + a)-
factorsG; could have is at Iea%t(tr +s+c)+ 1. Therefore the number of different
values ofx for which G has an(r,r + a)-factorization withx (r,r -+ a)-factors is at
mostt —1 <t. Thus

w(r,s,a,t) > We(r,s+2,a,t).

Consequently
w(rv Sa a,t) = llJe(r, S+ 2a aat),

so, by Lemma 14,

_ [ We(rsat) ifalrt+s+c0<$<a-2
w(r,s,a,t)_{ Pe(r,s,a,t) +r ifa|rt+s+c,g: 1

Therefore, by Lemma 13,

r _ i < C<a_
W(rsat) = ?(tr+s+c)+(t Lyr !fa\rt+s+c,(2_2_2 2,
sr+s+o)+(t—-Dr+r ifalrt4s+c,35=—-1
r . c _a
= —(tr+s+c)+(t—21r ifajrt+s+c,0<_-<_--1
a 272
(]

Corollary 15. Letr,s,a,t be integers with,ia, t all positive and s non-negative. Let
r, s and a be even. Then

lIJ(r, S> avt) = L|-’e(r7 Sv aat)'

We note that Theorem 11 can be re-expressed in the following way.

Theorem 11. Let r,s a,t be integers with,ia,t positive and s non-negative. Let
r,s,a be even. Then

tr+s

Y(rsat)=r { er(t—l)r.

The remaining task in this section is to remove from Theorem 11 (Qrthé
restriction thas be even. We note the following lemmas.

Lemma 16. Letr,s a,t be integers with,ia,t positive and s non-negative. Then
(r,s,a,t) <Y(r,s+1,at).

Proof. Letd > Y(r,s+1,a,t). Any (d,d+s)-pseudograph is also(d,d + s+ 1)-
pseudograph. Thus if aldl,d + s+ 1)-pseudographs have r + a)-factorizations
with x (r, r +a)-factors for at leagtvalues ofx, then so do al{d, d + s)-pseudographs.
Therefore(r,s+1,a,t) > Y(r,s,a,t). O

13



Lemma 17. Let r,s,a,t be integers with,ia,t all positive and s non-negative. Let

r,a,s be even. If
nt+s| rnt+s+2
a | a

theny(r,s,a,t) = Y(r,s+1,a,t) = Y(r,s+2,at).

Proof. By Lemma 16(r,s,a,t) < (r,s+1,a,t) < W(r,s+2,a,t). By Theorem
. T t 2] .
11 (or 11), since F ;Sw = P +as+ W it follows thaty(r,s,a,t) = W(r,s+

2,a,t), so Lemma 17 follows. O

It remains to consider the case whelS| < [£5t2]. Sincer, s anda are
even, this occurs whea| rt +s. Thus we need to evaluatgr,s+ 1,a,t) whenr
anda are evensis odd anda | rt +s— 1. We do this in Lemma 18.

Lemma 18. Letr,s,a,t be integers with,@a,t positive and s non-negative. Lear
be even and s be odd, and let@ +s— 1. Then

t -1
w(r,s,at)=r (rJras) +(t—1)r.
Proof. Letd* =r (®5=1) + (t — 1)r. First note that
y(r,s,at) > w(r,s—1at) by Lemma 16,
= Ye(r,s—1at) by Corollary 15,
= r(&=h 4+ t-r by Lemma 13 withc = 0,
= d*

Next notice that, by Lemma 13 (with= —2),

We(r,s+1,at) = —(tr+(s+1)—2)+(t—1)r,

r
a
anda|tr+(s+1)—2.

Thus Ye(r,s+ 1,a,t) = d*. Then, ford even,d > d*, any (d,d + s+ 1)-
pseudograph has dnr + a)-factorization intox (r,r + a)-factors fort different
values ofx; therefore any(d + 1), (d + 1) + s)-pseudograph has this property too
(since any((d+1),(d+ 1)+ s)-pseudograph is @, d + s+ 1)-pseudograph), and
any (d,d + s)-pseudograph has this property (since &tyd + s)-pseudograph is
a (d,d + s+ 1)-pseudograph). Therefore, for any integer d*, any (d,d + s)-
pseudograph has dnr + a)-factorization intox (r,r + a)-factors fort different
values ofx. Thusd* > y(r,s,a,t), and so

(s at)= ;(tr +s—-1)+(t—-1r
whena |tr +s—1. O

To sum up our knowledge d(r,s,a,t) whenr anda are even, we have:

14



Theorem 19. Let r,s,a,t be integers with,|a,t positive and s non-negative. Letr
and a be even. Then

+(t—=21r.

o |rt+s-1
w(rvsaaat) =r ’Va-‘

Proof. This follows from Theorem Y1Lemma 17 and Lemma 18. O

4 Bounds fory(r,s,at) whenr, a are not both even

Rather surprisingly, we can find reasonable boundgfors,a,t) whenr anda are
not both even.
We first note the following lemmas.

Lemma 20. Letp,r,s,a,a,t be integers witlp, r, a, a,t positive and s non-negative.
Letp<r<r+4+a<p+a. Then

d(r,sat) > Y(p,sat).

Proof. Letd > y(r,s,a,t). Any (r,r +a)-factor of a pseudograph is alsd@p +
o)-factor. Thus if all(d, d + s)-pseudographs have &nr + a)-factorization intax
(r,r +a)-factors for at leadt different values ok, then all(d,d + s)-pseudographs
have(p, p + a)-factorization intox (p,p + o)-factors for at least different values
of x. Therefora(r,s,a,t) > Y(p,sa,t). O

Two special cases of Lemma 20 are of particular importance.
Lemma 21. Letr,s,a,t be integers with,|a,t positive and s non-negative. Then
() g(r,s,at) > Y(r,s,a+1t).
(i) Y(r,s,at) <yY(r+1,s,a—1t).

Proof. (i) corresponds to taking =r anda = a+ 1 in Lemma 20, and thep=r
andr+a<r+(a+1)=p+a.

(ii) corresponds to taking =r +1 anda = a—1 in Lemma 20, and then
p=r+1lr+a=(r+1)+(@a-1)=p+a. O

Next we boundy(r,s,a,t) whenr anda are both odd.

Lemma 22. Letr,s a,t be integers with,t positive, &> 3 and s non-negative. Let
r,a be odd and s be even, let+ 1)t + s# 2 (moda—1). Then

Yr+1lsa-1t)—1<y(r,sat)<y(r+1sa—1t).

Note that, as + 1 anda— 1 are both evenj(r,s,a,t) is evaluated in Theorem
19.
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Proof. By Lemma 21(r,s,a,t) < Y(r+1,s,a—1t).

To prove the other inequality, let= Y(r +1,s,a—1,t) — 2, so thad is even.
Let F be the(d,d + s)-pseudograph with two componen@; andG;, whereG;
has one vertex on which are pIac%doops, andG; has one vertex on which are
placeddT+s loops. Since anda are both odd and all the edges @fare in fact
loops, any(r,r + a)-factor of G is actually an(r + 1,r + a)-factor, i.e. an((r +
1),(r+1)+ (a—1))-factor.

By Lemma 1, it follows that for any(r +1), (r + 1) + (a— 1))-factorization of
Gintox ((r+1),(r+1)+ (a—1))-factors,

d+s
(r+1)+(a—1)

<x<i
— T r+1

Sinced = Y(r +1,s,a—1,t) — 2, it follows from Theorem 19 (sincgis even) that

d:(r+1)r(r;1)l+ﬂ+(t—1)(r+l)—2,
50 d tr+1)+
r )
r+1:{ a—1 W t=D-177
Therefore

X< F(r:_l);rs-‘ +(t—2).

We also have that

tr+1)+s

d+s:(r+1){ 1

W+(t—1)(r+1)+s—2

so that

—~

r+1)

d4s=
+ a—1

(tr+1)+s+c)+(t—1)(r+1)+s-2

—~
~—

where 0< § < &1 —1landa—1|(r+1)t+s+c.
After some calculation, we find that

d+s _[tr+1)+s] r+c+3
r+1)+(a-1) a-1 r+a

Since 0< § < &1 —1 and(r + 1)t + s# 2 (moda— 1), it follows thatr +c+3 <

r +a, and so
‘> F(r +1)+s" .
- a—1
There are therefore onty— 1 values thak can take, so there do not existalues
of xfor whichG has an((r + 1), (r + 1) 4 (a— 1))-factorization intax ((r +1), (r +
1) + (a—1))-factors. Therefore there do not existalues ofx for which G has an
(r,r +a)-factorization intox (r,r + a)-factors. It follows thatl < y(r,s,a,t).
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We now deduce thap(r +1,s,a—1,t) — 1 < Y(r,s,a,t), so that
LIJ(r + 1,S,a— 1’t) -1< w(rvsv a7t) < lIJ(r + l,S,a— 17t)
O

The missing case of Lemma 22, wh@n+ 1)t +s= 2 (moda— 1), is covered
less well by Lemma 23:

Lemma 23. Let r,s,a,t be integers with,t positive, a> 3 and s> 2. Letra be
odd and(r + 1)t + s= 2 (moda— 1) (so that s is even). Then

Wrr+1,s—2,a—1t)—1<y(r,sat) <w(r+1ls—2a—1t)+r.

Note thaty(r +1,s—2,a— 1,t) can be written down explicitly using Theorem
19.

Proof.
Yr+1,s—2,a—1t)—1
< Y(r,s—2,a,t) by Lemma 22,
< yY(r,sat) by Lemma 16,
< Y(r,s+2at) by Lemma 16 again,
< Y(r+1ls+2a-1t) by Lemma 22,
= Y(r+1ls—2a—1t)+r by Theorem 19.

O

Theorem 24. Let r,s,a,t be integers with,t positive, a> 3 and s non-negative.
Letr,a be odd. Then

W(r+1,s,a—1t)—1<y(r,sat) <y(r+1sa—1t)
if (r+1)t+s#1,2(moda—1), and fori=1or 2and s> i, then
W(r+1,s—i,a—1t)—1<y(r,sat) <w(r+1s—i,a—1t)+r
if r+1)t+s=i(moda—1).
Note that the bounding terms are given explicitly in each case in Theorem 19.

Proof. If (r+1)t+s# 2 (moda— 1) andsis even, then the theorem follows from
Lemma 22.
If (r+1)t+s# 1 (moda— 1) andsis odd, then

W(r+1l,sa—1t) -1

= Y(r+1ls-1la-1t)—-1 by Theorem 19 sincg + 1)t +s—1# 1 (moda—1),

< yY(r,s—1at) by Lemma 22 sincér + 1)t + (s—1) # 2 (moda—1),

< Y(r,sat) by Lemma 16,

< Y(r,s+1at) by Lemma 16 again,

< Y(r+1s+la—1t) by Lemma 22 sincé¢r + 1)t + (s—1) # 2 (moda—1),

= Y(r+1sa—1t) by Theorem 19 sincé + 1)t + (s+1) —1# 1 (moda—1),

ie.(r+1t+s#1(moda—1).
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If (r+1)t+s=1(moda—1) thensis odd and

W(rr+1ls—la-1t)—1
< yY(r,s—1at) by Lemma 22 sincér + 1)t 4+ (s—1) # 2 (moda—1),
< Y(r,sat) by Lemma 16,
< yY(r,s+1at) by Lemma 16 again,
< Y(r+1ls—-La—1r)+r by Lemma 23 sincér + 1)t + (s+1) = 2 (moda—1).
If (r+1)t+s=2(moda— 1) the theorem follows from Lemma 23. O

Our results and proofs in the remaining cases, when onepnfla is even and
the other is odd, are very similar to the case when bahda are odd, and so we
just give brief accounts, accounts which may be filled out by imitating the earlier
proofs in obvious ways.

We look next at the case wheris even andx is odd.

Lemma 25. Letr,s a,t be integers with,t positive, &> 3 and s non-negative. Let
rand s be even and a be odd. Letis# 2 (mod a—1). Then

w(r,s,a—1,t) —1 < yY(r,s,at) <y(r,s,a—1,t).

Proof. By Lemma 21(r,s,a,t) < Y(r,s,a—1,t).

To prove the other inequality, let= Y (r,s,a— 1,t) — 2, so thaid is even. Let
G be the(d,d + s)-pseudograph with two componen@; andG,, whereG; has
one vertex on which are placgdoops, and3; has one vertex on which are placed
d7+s loops. Since is even anda is odd, any(r,r + a)-factor of G is actually an
(r,r+(a—1))-factor.

By Lemma 1, it follows that, for anyr,r + (a— 1))-factorization ofG into x
(r,r +(a—1))-factors,

d+s d
— = <x< —.
r+@-1 - —r+1
Using Theorem 19 we find that
9: ’Vtr_'_s-‘ +t_l_g
r a—1 r
so that
x < Frjﬂ +t—2.

We also find by arguing as in the proof of Lemma 22 that, for some even integer
suchthat0< § <81 —landa—1|rt+s+c,

d+s tr+s c+r+2
r+(a—1)

“la-1| r+(@a-1°
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Butc=a—3ifand only ifrt + s= 2 (moda— 1) so that, sincet + s 2 (moda—
1),
tr+s
>
=[5
and so there are at mdst 1 possible values of.

Therefore there do not existalues ofx for whichG has ar(r,r +a)-factorization
into x (r,r +a)-factors. Therefore

d<y(r,sat)

and so
w(r,s,a—1t) —1 < Y(r,sat).

O]

The missing case of Lemma 25, when+ s= 2 (moda— 1) is covered in
Lemma 26.

Lemma 26. Letr,s,a,t be integers with,t positive, & 3and s> 2. Let r be even
and rt+s=2 (mod a— 1) (so that s is even). Then

Y(r,s—2,a—1t)—1<yY(r,s,at) <y(r,s—2,a—1t)+r.

Proof. Similar to the proof of Lemma 23, but using Lemma 25 instead of Lemma
22. O

Theorem 27. Let r,s,a,t be integers with,t positive, a> 3 and s non-negative.
Letr be even and a be odd. Then

w(r,s,a—1,t) —1<y(r,s,at) <y(r,sa—1t)
ifrt +s# 1,2 (mod a— 1) and, fori=1or 2and s> i, then
lIJ(r,S— iaa_ 17t) -1 < qJ(r7sva7t) < lIJ(raS— iaa_ 17t) +r

ifrt +s=i(moda—1).
The bounding terms in each case are given explicitly by Theorem 19.

Proof. The proof follows the proof of Theorem 24, using Lemmas 25 and 26 in-
stead of Lemmas 22 and 23. O

Finally we consider the case wheis odd anda is even.

Lemma 28. Letr,s a,t be integers with,t positive, &> 3 and s non-negative. Let
r be odd and as be even. Letr + 1)t +s# 2 (mod a— 2). Then

l*lJ(r +1,S,a— 2’t) -1 S w(rasv a7t) g llJ(r + 1,S,a— 27t)
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Proof. By Lemma 21,
llJ(CS’aat) < qJ(r + l,S,a— 17t) < W(r + l,S,a— 27t)

To prove the other inequality, let= Y(r +1,s,a— 2,t) — 2. Thend is even. Let
G be the(d,d + s)-pseudograph with two componen@; andG,, whereG; has
one vertex on which are placcgdoops, and>; has one vertex on which are placed
%*5 loops. Since is even anda is odd, any(r,r + a)-factor of G is actually an
((r4+1),(r+1)+ (a—2))-factor.

By Lemma 1, it follows that, for any(r + 1), (r + 1) 4+ (a— 2))-factorization
intox ((r+1),(r+1)+ (a— 2))-factors,

d+s
r+1)+(@a-2)

d
<x< ——.
SX= T

[EEN

Using Theorem 19, it follows that

X< P(r+1)+s

t—2
a—2 -‘+

It also follows (by arguing as in Lemmas 22 and 25) that, for some even integer
such that 0< § < 22 —1and(a—2) |t(r +1) +s+c,

d+s _F(r+1)+s"‘(r+1)+(c+2)
r+)+(@-2 | a-2 r+1)+(a-2)

Butc=a—4ifandonlyif(r+ 1)t +s=2 (moda—2) so that, sincér + 1)t +s# 2
(moda—2),
. P(Hrl)jﬂ ‘
- a—2

Therefore there do not existalues ofx for which G has an’r, r + a)-factorization
into x (r,r + a)-factors. Thereforel < Y(r,s,a,t) and sop(r +1,s,a—2;t) -1 <
Q(r,s at). O

The case whefr + 1)t +s= 2 (moda— 2), missed by Lemma 28, is covered
by Lemma 29.

Lemma 29. Letr,s,a,t be integers with,t positive, a> 3 and s> 2. Letr be odd,
a be even, an@r + 1)t + s= 2 (mod a— 2) (so s is even). Then

Yr+1,s—2,a-2t)-1<yY(r,sat) <P(r+1,s—2,a—2;t)+r.

Proof. This is similar to the proof of Lemma 23, using Lemma 28 instead of
Lemma 22. O
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Theorem 30. Let r,s,a,t be integers with,t positive, a> 3 and s non-negative.
Let r be odd and a be even. Then

w(r+1,sa—2t)—1<y(r,s,at) <yY(r+1sa—2t)
if (r+1)t+s#1,2(moda—2), and fori=1,2and s> i,
Y(rr+1ls—i,a—2t)—1<y(r,s,at) <P(r+1,s—i,a—st)+r
if r+1)t+s=i(moda-2).

Proof. The proof follows the proof of Theorem 24, using Lemmas 28 and 29 in-
stead of Lemmas 22 and 23. O

5 Multigraphs and simple graphs

In this section we examine the implications of our results on pseudographs have
for multigraphs and simple graphs.

First we define analogues of the functigr,s,a,t). For positive integers,t
and non-negative integeass, leto(r, s, a,t) be the least integer such that, for each
integerd > o(r,s,a,t), each(d,d + s)-simple graph has afr,r + a)-factorization
with x (r,r 4+ a)-factors for at least values ofx.

The functiono(r,s,1,t) was evaluated in [8], and shown to be given by the
formula in:

Theorem 31. For integers 1t > 1 and s> 0,

rt+s)+(t—21r+1 ifrisodd,0<s<1,

r(rt+s)+(t—21r ifriseven,0<s<1,
o(r,s1,t) =
r(t+s)+(t—r+r+1 ifs>2.

For positive integergt and non-negative integeass, let(r, s, a,t) be the least
integer such that, for each integep p(r, s, a,t), each(d, d+ s)-multigraph has an
(r,r +a)-factorization withx (r,r 4 a)-factors for at leadt values ofx.

The numbersi(r,0,1,1) andp(r,1,1,1) were investigated in [6] where bounds
were obtained and, for some valuesrpthe number was determined. The most
striking points arising from this are:

(@) if r is odd thenu(r,0,1,1) = o(r,0,1,1) and, although this is not proven, it
seems very likely that(r,1,1,1) = o(r,1,1,1);

(b) if riseven, then, fose {0, 1}, u(r,s,1,1) is at least approximatelg/o(r, s, 1,1).

Kano [10] and Cai [3] also studigd, r 4 a)-factorizations ofd, d 4 s)-multigraphs;
their approach was quite a lot different from ours.

The straightforward relationships between the functiofrss, a,t), p(r,s, a,t)
andy(r,s,a,t) are given in the next two theorems.
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Theorem 32. Letr,s,a,t be integers with,t, a positive and s non-negative. Then
o(r,s,at) <u(rsat) <yrsat).

Proof. This follows from the fact that each simple graph is a multigraph, and each
multigraph is a pseudograph. O

Theorem 33. Letr,a,t be positive integers and s a non-negative integer. Let r and
a be even. Then

o(r,s,at) = u(r,s,at) =y(r,sat)=r [”Jrj_lw +(t=1r.

Proof. We refer back to the remark after the statement of Theorem 11. The whole
of the development from Theorem 11 up to Theorem 19 inclusive could apply
equally well if the graphs considered were restricted to being multigraphs, or to
being simple graphs. Thus the theorem follows from Theorem 19 (and its ana-
logues for simple graphs and multigraphs). O

Theorem 33 enables us to obtain convenient bounds(fos, a, t) and(r, s, a,t)
in the case whenandr + a are not both even.

Theorem 34. Let r,s,a,t be integers with r and a both odda> 3,s>0,t > 1.
Then

(r—1s,a+1Lt) <a(r,sat) <prsat) <y(r+1sa-1t).

Note thaty(r — 1,s,a+ 1,t) in Theorem 34 is given explicitly in Theorem 19
(or Theorem 33).

Proof. By Theorem 33,
W(r—1sa+1t)=o0o(r—1sa+1t).
By the same argument as was used in the proof of Lemma 21, it follows that
o(r—1,s,a+1t)<o(r,s,at) <o(r+1sa—1t).
Then, by Theorem 33 again,
or+1,sa—1t)=yY(r+1,s,a—1t).
Following the same argument fa(r,s,a,t) we can obtain:
w(r—1sa+1t) <ursat) <Pr+1sa—1t).

Finally we note that, by Theorem 3@(r,s,a,t) < u(r,sa,t). O
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Theorem 35. Letr,s,a,t be integers with r even and a odd. Letrl, s> 0, a> 3,
t > 1. Then

y(r,s,a+1,t) <o(r,sat) <ursat) <y(r,sa—1t).
Proof. This follows similarly since, as in Lemma 21,
o(r,s,a+1,t) <o(r,sat) <o(r,s,a—1t).
O

Theorem 36. Letr, s, a,t be integers with r odd and a even. Letr3, s> 0, a> 4,
t> 1. Then

Y(r—Llsa+2t)<o(rsat) <prsat) <P(r+1lsa-2t).
Proof. The proof is similar:
W(r—1sa+2t)=o(r—1sa+2t)<o(r—1sa+1t)<o(rsat)<---

e <p(nsat) <ur+lsa—1t) <pr+1,s,a-2t)=Y(r+1,sa—2t).
]

Of course, in Theorems 34-36, the upper and lower bounds are given explicitly
in Theorem 19 (or Theorem 33).

6 Further comments

Although the bounds for pseudographs we have found are quite good, bounds for
multigraphs seem to be harder to obtain, and interest in them seems likely to con-
tinue. Multigraph bounds were found by Cai [3] and, as he showed, in some ways
these are best possible, but they are not always best possible (see [6] for the case
whena = 1); they are also expressed in a different way from our results. In The-
orem 37 we collect together some bounds for multigraphs which may be readily
gleaned from our results. We just give the boundd ferl, since this is of primary
interest, but the bounds whén- 1 follow just as easily.

Theorem 37. Let r,s,a be integers with,a positive and s non-negative.

(i) Ifrand a are even then

a

ur,sal)=r P+S_ 1-‘ .

(i) Ifrandaare odd, r> 3, a> 3, then

r—1+s
a+1

=

-‘ <pursal) <(r+1) P+1+Sw .

a—1
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(iii) Ifrisevenand ais odd, & 3, then

"r—i—S

r [
a+1

-‘ <u(r,sa1)<r FJFS-‘ )

a—-1
(iv) Ifrisodd and ais even, ¥ 3, a> 4, then

r—1+s
a+2

=

1 <H(rsal)<(r+1) ﬁiﬂ‘

Proof. (i) follows from Theorem 33.

(ii) follows from Theorem 33 and the fact that the analogue of Lemma 21(ii) for
u(r,s,a,t) is true (it may be established by the same argument).

(iii) follows similarly, using the corresponding analogue to Lemma 21(i) for
H(r,sa,t).

(iv) follows similarly, using the analogues of Lemma 21(i) and 21(ii) as follows:

U(r —l,S,a+2, 1) < U(r - 1,S,a+l, 1) < U<r75737 1)7 and
U(ﬁsaa»l) < H(r+l,5,a— 17 1) < U(r+1a5>a—2, 1)
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