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Abstract

For d ≥ 1, s≥ 0 a(d,d+s)-graph is a graph whose degrees all lie in the interval
{d,d+1, . . . ,d+s}. Forr ≥ 1, a≥ 0 an(r, r +1)-factorof a graphG is a spanning
(r, r +a)-subgraph ofG. An (r, r +a)-factorizationof a graphG is a decomposition
of G into edge-disjoint(r, r +a)-factors.

We prove a number of results about(r, r +a)-factorizations of(d,d+s)-bipartite
multigraphs and of(d,d + s)-pseudographs (multigraphs with loops permitted).
For example, fort ≥ 1 letβ(r,s,a, t) be the least integer such that, ifd≥ β(r,s,a, t)
then every(d,d + s)-bipartite multigraphG has an(r, r + a)-factorization intox
(r, r +a)-factors for at leastt different values ofx. Then we show that

β(r,s,a, t) = r

⌈
tr +s−1

a

⌉
+(t−1)r.

Similarly, for t ≥ 1 let ψ(r,s,a, t) be the least integer such that ifd ≥ ψ(r,s,a, t)
then each(d,d + s)-pseudograph has an(r, r + a)-factorization intox (r, r + a)-
factors for at leastt different values ofx. We show that, ifr anda are even, then
ψ(r,s,a, t) is given by the same formula.

We use this to give tight bounds forψ(r,s,a, t) whenr anda are not both even.
Finally, we consider the corresponding functions for multigraphs without loops,
and for simple graphs.

1 Introduction

For d ≥ 1, s≥ 0 a(d,d+s)-graph is a graph whose degrees all lie in the interval
{d,d+1, . . . ,d+s}. Forr ≥ 1, a≥ 0 an(r, r +a)-factorof a graphG is a spanning
(r, r +a)-subgraph ofG. An (r, r +a)-factorizationof a graphG is a decomposition
of G into edge-disjoint(r, r +a)-factors. An(r, r +a)-factorization is also described
less precisely as adegree-bounded factorizationof G.

A survey paper dealing with degree-bounded factorizations was published by
Akiyama and Kano in 1985 [1], and recent surveys by Plummer [14, 15] also deal
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with degree-bounded factorizations. Further important papers are by Akiyama and
Kano [2], Kano [10] and Cai [3]. For some recent work by the present author, see
[6], [7] and [8].

Bipartite multigraphs are the simplest kind of graph to consider for some fac-
torization problems; in particular, we are able without much difficulty to obtain
exact results for the questions about degree-bounded factorizations we consider
here. Pseudographsare multigraphs in which loops are permitted; a loop counts
two towards the degree of the vertex it is on. There is a well-known connection
between Eulerian pseudographs and bipartite multigraphs. We exploit this con-
nection to deduce some exact and some approximate results about the analogous
questions concerning certain kinds of degree-bounded factorizations of pseudo-
graphs. Finally we draw attention to the various implications for similar questions
about simple graphs and about multigraphs (without loops).

In Section 2 we discuss bipartite multigraphs. In Section 3 we apply the results
from Section 2 to pseudographs; direct application of the bipartite multigraph re-
sults leads to good results about(r, r +a)-factorizations of(d,d+s)-pseudographs
in the case whenr andr +a are both even. In Section 4 we extend these results to
the cases whenr andr +a are not both even. In Section 5 we examine the impli-
cation of these results for the analogous problems about multigraphs without loops
and about simple graphs.

Before concluding our introduction, let us draw attention to the following lemma
about(r, r +a)-factorizations of(d,d+s)-pseudographs.

Lemma 1. Let r be a positive integer and s and a be non-negative integers. Let G
be a(d,d + s)-pseudograph with at least one vertex of degree d and at least one
vertex of degree d+s. Suppose that G has an(r, r +a)-factorization with exactly x
(r, r +a)-factors. Then

d+s
r +a

≤ x≤ d
r
.

Proof. Let v be a vertex of degreed+s. Thenx(r +a)≥ d(v) = d+s, sox≥ d+s
r+a.

Similarly, if w is a vertex of degreed, thenxr ≤ d(w) = d, sox≤ d
r .

2 Factorizing bipartite multigraphs

In our first theorem we show that, givend, r,a,s, there is a large intervalI =
I(d, r,a,s) =

[
d

r+a, d+s
r

]
which has the property that there exist(d,d+s)-bipartite

multigraphsG which have(r, r + a)-factorizations intox (r, r + a)-factors if and
only if x∈ I , and a smaller intervalJ = J(d, r,a,s) =

[
d+s
r+a, d

r

]
which has the prop-

erty that all(d,d + s)-bipartite multigraphs have an(r, r + a)-factorization intox
(r, r +a)-factors if and only ifx∈ J. Similar but more specialized results for sim-
ple graphs were proved in [6] and [8].

An invaluable tool in our proofs is the following easy result due to McDiarmid
[12] and de Werra [16, 17, 18]. For a graphG, anedge-colouringof G is a map
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φ : E(G) 7→ C , whereC is a set of colours. An edge-colouringφ of G is equitable
if

| |α(v)|− |β(v)| | ≤ 1

for each vertexv ∈ V(G) and pairα,β ∈ C , whereα(v) andβ(v) are the sets of
edges incident withv colouredα andβ respectively (a loop onv counts two towards
|α(v)| or |β(v)|, respectively).

The result of McDiarmid and de Werra is:

Lemma 2. Let k be a positive integer and let G be a bipartite multigraph. Then G
has an equitable edge-colouring with k colours.

Our first theorem is:

Theorem 3. Let d, r and x be positive integers, and let a, s be non-negative inte-
gers.

(i) If
d+s
r +a

≤ x≤ d
r

then every(d,d+s)-bipartite multigraph has an(r, r +a)-factorization into
x (r, r +a)-factors.

(ii) If

x∈
[

d
r +a

,
d+s
r +a

)
∪

(
d
r
,
d+s

r

]
then some(d,d+s)-bipartite multigraphs do and some do not have an(r, r +
a)-factorization into x(r, r +a)-factors.

(iii) If

x 6∈
[

d
r +a

,
d+s

r

]
then no(d,d + s)-bipartite multigraph has an(r, r + a)-factorization into x
(r, r +a)-factors.

Proof. (i) Suppose thatd+s
r+a ≤ x ≤ d

r . Then r ≤ d
x ≤

d+s
x ≤ r + a. Let G be

a (d,d + s)-bipartite multigraph. By Lemma 2,G has an equitable edge-
colouring withx colours. Sincer ≤ d

x ≤
d+s

x ≤ r + a, it follows that each
colour class is an(r, r +a)-factor ofG. ThusG has an(r, r +a)-factorization
into x (r, r +a)-factors.

(ii) Let x∈
[

d
r +a

,
d+s
r +a

)
∪

(
d
r
,
d+s

r

]
.

First we show that there are(d,d + s)-bipartite multigraphs which do have
an (r, r + a)-factorization intox (r, r + a)-factors. Since d

r+a ≤ x≤ d+s
r , if
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a≥ 1 then there are integersa1 ands1 with 0≤ a1 ≤ a and 0≤ s1 ≤ s such
that

d
r +a

≤ d+s1

r +a1 +1
≤ x≤ d+s1

r +a1
≤ d+s

r

so thatx(r + a1) ≤ d + s1 ≤ x(r + a1 + 1). Therefore, there are integers
x1 ≥ 0, x2 ≥ 0 andx1 +x2 = x such thatx1(r +a1)+x2(r +a1 +1) = d+s,
or, puttinga1 +1 = a2,

x1(r +a1)+x2(r +a2) = d+s1

with 0≤ a1 ≤ a2 ≤ a. This equation also holds ifa = 0 for somes1 with
0≤ s1 ≤ s, for thenx = d+s1, so we can havea1 = a2 = 0, x1 = x, x2 = 0.
Let F1, . . . ,Fx1 be(r +a1)-regular bipartite multigraphs with the same bipar-
tition (V1,V2) of their vertex sets, and letFx1+1, . . . ,Fx1+x2 be(r +a2)-regular

bipartite multigraphs also with the bipartition(V1,V2). Then letG =
x[

i=1

Fi .

Then G is regular of degree(r + a1)x1 + (r + a2)x2 = d + s1. ThusG is
a (d,d + s)-bipartite multigraph which has an(r, r + a)-factorization intox
(r, r +a)-factors.

Next we show that there are(d,d + s)-bipartite multigraphs which do not
have an(r, r +a)-factorization intox (r, r +a)-factors.

Firstly, letx∈
[

d
r+a, d+s

r+a

)
and letG be a(d+s)-regular bipartite multigraph.

The average degree over all the factors of the vertices ofG in a decomposi-

tion of G into x factors isd+s
x . But

d+s
x

>
d+s

(d+s)/(r +a)
= r +a, so the

factors cannot all be(r, r +a)-factors.

Secondly, letx∈
(

d
r ,

d+s
r

]
and letG be ad-regular bipartite multigraph. The

average degree over all the factors of the vertices ofG in a decomposition

of G into x factors is d
x . But

d
x

<
d

(d/r)
= r, so the factors cannot all be

(r, r +a)-factors.

(iii) If x < d
r+a thenx(r + a) < d. Thus the union ofx (r, r + a)-bipartite multi-

graphs has maximum degree less thand, and so no(d,d+s)-bipartite multi-
graph has a decomposition intox (r, r + a)-factors. Similarly, ifx > d+s

r ,
thenxr > d+s. Thus the union ofx (r, r +a)-bipartite multigraphs has min-
imum degree greater thand + s, so no(d,d + s)-bipartite multigraph has a
decomposition intox (r, r +a)-factors.

We note the following two corollaries of Theorem 3.
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Corollary 4. Let d, r,x be positive integers and let s be a non-negative integer. Then
every(d,d+s)-bipartite multigraph has an(r, r +a)-factorization into x(r, r +a)-
factors if and only if

x∈
[

d+s
r +a

,
d
a

]
.

Corollary 5. Let d, r,x be positive integers and let s be a non-negative integer. Then
there is some(d,d + s)-bipartite multigraph which has an(r, r + a)-factorization
into x (r, r +a)-factors if and only if

x∈
[

d
r +a

,
d+s

r

]
.

Next we apply Theorem 3. For positive integersr,a, t and non-negative integer
s, let β(r,s,a, t) be the smallest integer such that, for each integerd ≥ β(r,s,a, t),
each(d,d+s)-bipartite multigraph has an(r, r +a)-factorization withx (r, r +a)-
factors for at leastt different values ofx. In Theorem 6 we evaluateβ(r,s,a, t).

Theorem 6. Let integers r,a, t be positive and s be non-negative. Then

β(r,s,a, t) =
r
a
(tr +s+c)+(t−1)r,

where c is such that a| tr +s+c and−1≤ c≤ a−2.

Theorem 11 below about pseudographs seems to read exactly the same, but
note that therec is even and we have 0≤ c

2 ≤
a
2−1.

In [8] an exact result for simple graphs whena= 1 was given, and earlier, in [7]
a more restricted exact result witha= 1 andt = 1 was proved. The cases for simple
graphs whena= 1, t = 1, s∈ {0,1} were dealt with in [6]. The first result on these
lines was the casea = 1, t = 1, s= 0 for simple graphs; it was considered in 1984
and 1986 by Era [5] and Egawa [4], using methods which were different from ours.

Proof of Theorem 6.

(i) We show that
β(r,s,a, t)≥ r

a
(tr +s+c)+(t−1)r

wherea | tr +s+c and−1≤ c≤ a−2.

Let d = r
a(tr +s+c)+(t−1)r−1. We show that, for this value ofd, there

do not existt values ofx betweend+s
r+a andd

r . Then, by Theorem 3, it follows
that there exist(d,d+s)-bipartite multigraphs which do not have(r, r +a)-
factorizations withx (r, r +a)-factors fort different values ofx.

We have
d
r

=
1
a
(tr +s+c)+(t−1)− 1

r
and

d+s= (r +a)
1
a
(tr +s+c)−c− r−1
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so that
d+s
r +a

=
1
a
(tr +s+c)− r +c+1

r +a
.

Sincec+ 1 < a it follows that the values ofx which satisfy d+s
r+a ≤ x ≤ d

r

are 1
a(tr +s+c)+ j for 0≤ j ≤ t−2, so there are indeed fewer thant such

values.

(ii) Next we show thatβ(r,s,a, t)≤ r
a(tr +s+c)+(t−1)r.

Let d = r
a(tr +s+c)+(t−1)r +k, wherek≥ 0. We show that, in this case,

there do existt values ofx betweend+s
r+a andd

r . Then it follows from Theorem
3 that every(d,d+s)-bipartite multigraph has an(r, r +a)-factorization into
x (r, r +a)-factors for at leastt values ofx.

First note that
d
r

=
1
a
(tr +s+c)+ t−1+

k
r

and that
d+s
r +a

=
1
a
(tr +s+c)− r +c

r +a
+

k
r +a

.

Therefore ifr +c≥ k≥ 0 then, sincer +a > r +a−2≥ r +c, the values of
x lying betweend+s

r+a and d
r include

1
a
(tr +s+c), . . . ,

1
a
(tr +s+c)+ t−1

so there are at leastt values ofx. We also note that

d
r
− d+s

r +a
= t−1+

r +c
r +a

+
ak

r(r +a)
.

Therefore if r+c
r+a + ak

r(r+a) ≥ 1, i.e.k≥ (1− c
a)r, thend

r −
d+s
r+a ≥ t.

Sincec is an integer, ifc 6= −1 then all values ofk ≥ 0 satisfy one of the
inequalitiesk≥ (1− c

a)r andr + c≥ k≥ 0, so it follows from Theorem 3
thatβ(r,s,a, t)≤ r

a(tr +s+c)+ t−1.

Now consider further the case whenc=−1. If 0≤ k≤ r−1 then, as we just
showed, there aret suitable integral values ofx. Now suppose that 2r +a≥
k≥ r. Then

d
r
≥ 1

a
(tr +s+c)+(t−1)+1 =

1
a
(tr +s+c)+ t,

while

d+s
r +a

=
1
a
(tr +s+c)+1− 2r +a−k+c

r +a

≤ 1
a
(tr +s+c)+1,
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sincec = −1 < 2r + a− k. So in this case also there aret suitable integral
values ofx.

The set of inequalities 0≤ k≤ r −1 (r ≤ k < 2r +a+c whenc = −1) and
k≥ (1+ 1

a)r cover all values ofk≥ 0. Therefore it follows that

β(r,s,a, t)≤ r
a
(tr +s+c)+ t−1

in this case also.

It now follows thatβ(r,s,a, t) = r
a(tr +s+c)+ t−1. �

3 Factorizations of pseudographs

In this section we give analogues for certain kinds of pseudographs of Theorem 3
and similar theorems for multigraphs and simple graphs in [6], [7] and [8]. The ana-
logue of Theorem 3 is the following Theorem 7 about(2r,2r +2a)-factorizations
of (2d,2d+2s)-pseudographs.

Theorem 7. Let d, r and s be positive integers, and let s be a non-negative integer.

(i) If
d+s
r +a

≤ x≤ d
r
,

then every(2d,2d+2s)-pseudograph has a(2r,2r +2a)-factorization into x
(2r,2r +2a)-factors.

(ii) If

x∈
[

d
r +a

,
d+s
r +a

)
∪

(
d
r
,
d+s

r

]
then some(2d,2d+2s)-pseudographs do and some do not have a(2r,2r +
2a)-factorization into x(2r,2r +2a)-factors.

(iii) If

x 6∈
[

d
r +a

,
d+s

r

]
then no(2d,2d + 2s)-pseudograph has a(2r,2r + 2a)-factorization into x
(2r,2r +2a)-factors.

It would be interesting to know to what extent Theorem 7 remains true if 2r is
replaced with 2r + 1 or 2a is replaced by 2a+ 1; in particular, is Theorem 7 still
true if 2s is replaced by 2s+1?

It is convenient to prove Theorem 7 by deducing it from Theorem 3 using
the following well-known connection between pseudographs and bipartite multi-
graphs.
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Let G be a pseudograph. Pair off the vertices ofG of odd degree, and, for each
such pair{x,y}, introduce an extra edgexy. Call the pseudograph obtained this way
G∗. Then each component ofG∗ is Eulerian. Choose an Eulerian circuit of each
component ofG∗ and orient the edges in one direction round each such Eulerian
circuit. If V =V(G∗) = {v1,v2, . . . ,vr} then construct a bipartite multigraphB(G∗)
with vertex setsU = {u1, . . . ,ur} andW = {w1, . . . ,wr}. If (vx,vy) is an oriented
edge ofG∗ then joinux to wy in B(G∗) by an edge. IfG∗ has a loop onvx, then
join ux to wx in B(G∗). Now fromB(G∗) construct a bipartite multigraphB(G) by
deleting each edge ofB(G∗) that corresponds to one of the extra edges introduced
above in formingG∗ from G. Clearly, given a pseudographG, the extra edges, the
Eulerian circuits of the components, and the orientations can all usually be chosen
in many different ways, so there are many possibilities forB(G). They all have the
property that|dB(G)(ui)−dB(G)(wi)| ≤ 1 for eachi, 1≤ i ≤ r.

On the other hand, given a bipartite multigraphBwith vertex setsU = {u1, . . . ,ur}
andW = {w1, . . . ,wr} satisfying the inequality|dB(ui)− dB(wi)| ≤ 1, then it is
possible to obtain a pseudographG(B). Given a pseudographG, although there
are many different possibilities forB(G), reversing the construction will always
produce the original pseudographG again. ThusG(B(G)) = G.

We now develop this connection in a more specific way for(2r,2r + 2a)-
factorizations.

Theorem 8. A pseudograph G has a(2r,2r +2a)-factorization into x(2r,2r +2a)-
factors if and only if a corresponding bipartite multigraph B(G) has an(r, r +a)-
factorization into x(r, r +a)-factors.

Proof. (i) SupposeG has a(2r,2r + 2a)-factorization intox (2r,2r + 2a)-factors
F1, . . . ,Fx. For 1≤ i ≤ x, construct a bipartite multigraphB(Fi) corresponding to
the factorFi . ThenB(Fi) is an(r, r +a)-bipartite multigraph and(B(F1), . . . ,B(Fx))
is an(r, r +a)-factorization of a bipartite multigraphB(G).

(ii) Suppose a bipartite multigraphB has an(r, r +a)-factorization intox (r, r +
a)-factors, sayF1, . . . ,Fx. For eachi, 1≤ i ≤ x, Fi corresponds to a(2r,2r + 2a)-
pseudographG(Fi), and(G(F1), . . . ,G(Fx)) is a(2r,2r +2a)-factorization ofG(B).

We now turn to the proof of Theorem 7.

Proof of Theorem 7.

(i) Let G be a(2d,2d + 2s)-pseudograph and let
d+s
r +a

≤ x≤ d
r

. From G we

may form a bipartite(d,d + s)-multigraphB(G). By Theorem 3(i)B(G)
has an(r, r + a)-factorization intox (r, r + a)-factors. By Theorem 8, this
corresponds to a(2r,2r +2a)-factorization ofG into x (2r,2r +2a)-factors.

(ii) Let x∈
[

d
r +a

,
d+s
r +a

)
∪

(
d
r
,
d+s

r

]
. By Theorem 3(ii), some(d,d + s)-

bipartite multigraphs do and some do not have an(r, r + a)-factorization
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into x (r, r + a)-factors. LetB1 and B2 be (d,d + s)-bipartite multigraphs
which do, and do not, respectively, have an(r, r + a)-factorization intox
(r, r + a)-factors. Then, by Theorem 8,G(B1) andG(B2) are(2r,2r + 2a)-
pseudographs which do, and do not, respectively, have a(2r,2r +2a)-factorization
into x (2r,2r +2a)-factors.

(iii) Let x 6∈
[

d
r +a

,
d+s

r

]
. By Theorem 3(iii), no(d,d+s)-bipartite multigraph

has an(r, r + a)-factorization intox (r, r + a)-factors. Therefore, by Theo-
rem 8, no(2d,2d+2s)-pseudograph has a(2r,2r +2a)-factorization intox
(2r,2r +2a)-factors. �

We note the following corollaries to Theorem 7.

Corollary 9. Let d, r,x be positive integers and let s be a non-negative integer. Then
every(2d,2d + 2s)-pseudograph has a(2r,2r + 2a)-factorization into x(2r,2r +
2a)-factors if and only if

x∈
[

d+s
r +a

,
d
r

]
.

Corollary 10. Let d, r,x be positive integers and let s be a non-negative inte-
ger. Then there is some(2d,2d + 2s)-pseudograph which has a(2r,2r + 2a)-
factorization into x(2r,2r +2a)-factors if and only if

x∈
[

d
r +a

,
d+s

r

]
.

We now turn to the analogue of Theorem 6. For positive integersr,a, t and non-
negative integers, let ψ(r,s,a, t) be the smallest integer such that, for each integer
d ≥ ψ(r,s,a, t), each(d,d + s)-pseudograph has an(r, r + a)-factorization withx
(r, r +a)-factors for at leastt different values ofx. For values ofr,s,a, t for which
ψ(r,s,a, t) takes no (finite) value, we putψ(r,s,a, t) =∞.

Theorem 11. Let r,a, t be positive integers and s a non-negative integer. Let r, s
and a all be even. Let c be an even integer such that a| tr +s+c and0≤ c

2 ≤
a
2−1.

Then
ψ(r,s,a, t) =

r
a
(tr +s+c)+(t−1)r.

Remark. Please notice that Theorem 11 and our whole account up to and including
Theorem 19 does not use anything peculiar to pseudographs. It could equally well
apply to multigraphs without loops, or to simple graphs. We shall make use of this
fact in Section 5 about multigraphs and simple graphs.

Whens∈ {0,1} then, as is explained in [6],ψ(r,s,1,1) = ∞. Some analo-
gous numbers in the caset = 1 for multigraphs (where loops are disallowed) were
studied by Akiyama and Kano [2], Kano [10] and Cai [3], and good results were
obtained. In [6] better bounds for multigraphs, although mostly not best possible,
in the casea= t = 1,s∈ {0,1}were found. In [10] Kano showed that a multigraph
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G is (2r,2r + 2a)-factorizable if and only ifG is a (2rm,2rm+ 2am)-multigraph
for some positive integerm. (This follows from a similar theorem of de Werra (see
[11]) which says that a bipartite multigraphG is (r, r +a)-factorizable if and only if
G is an(rm, rm+am)-bipartite multigraph for some positive integerm, by using the
connection sketched out above between bipartite multigraphs and pseudographs; of
course, although not stated as such, Kano’s theorem holds for pseudographs, not
just for multigraphs.)

In order to prove Theorem 11 more easily, we introduce two further functions,
ψe(r,s,a, t) andγ(r,s,a, t). For integerst ≥ 1, r ≥ 2, a≥ 2, s≥ 0 andr, a, s all
even, we letψe(r,s,a, t) be the least even integer such that, for each even integer
d ≥ ψe(r,s,a, t), each(d,d+s)-pseudograph has an(r, r +a)-factorization withx
(r, r +a)-factors for at leastt different values ofx.

For integersr,a, t ≥ 1 ands≥ 0, we letγ(r,s,a, t) be the smallest integer such
that, for each integerd≥ γ(r,s,a, t), each(2d,2d+2s)-pseudograph has a(2r,2r +
2a)-factorization intox (2r,2r +2a)-factors for at leastt different values ofx.

We first determine the value ofγ(r,s,a, t).

Lemma 12. Let r,s,a, t be integers with r, a and t positive and s non-negative.
Then

γ(r,s,a, t) =
r
a
(tr +s+c)+(t−1)r,

where c is such that a| tr +s+c and−1≤ c≤ a−2.

Proof. It follows from Theorem 8 that a(2d,2d+2s)-pseudographGhas a(2r,2r +
2a)-factorization intox (2r,2r +2a)-factors if and only if a corresponding(d,d+
s)-bipartite multigraphB(G) has an(r, r +a)-factorization intox (r, r +a)-factors.
Thereforeγ(r,s,a, t) = β(r,s,a, t). But, by Theorem 6,β(r,s,a, t) = r

a(tr +s+c)+
(t−1)r, wherea | tr +s+c and−1≤ c≤ a−2.

From Lemma 12 we deduce immediately the following Lemma 13. Lemma 13
is essentially Lemma 12 rephrased.

Lemma 13. Let r,s,a, t be integers with r,a, t positive and s non-negative. Let r, s,
and a all be even. Then

ψe(r,s,a, t) =
r
a
(tr +s+c)+(t−1)r,

where c is such that a| tr +s+c and−1≤ c
2 ≤

a
2−2.

Proof. From the definitions ofγ(r,s,a, t) andψe(r,s,a, t) it follows that, if r,s,a are
all even, then

ψe(r,s,a, t) = 2γ(
r
2
,
s
2
,
a
2
, t),

so by Lemma 12,

ψe(r,s,a, t) = 2
(r/2)
(a/2)

(
t
r
2

+
s
2

+
c
2

)
+(t−1)

r
2

10



wherec is such that(a/2) | t(r/2) + (s/2) + (c/2) (so thatc is also even) and
−1≤ c

2 ≤
a
2−2. Therefore

ψe(r,s,a, t) =
r
a
(tr +s+c)+(t−1)r,

wherec is such thata | tr +s+c (so thatc is even) and−1≤ c
2 ≤

a
2−2.

Lemma 14. Let r,s,a, t be integers with r,a, t all positive and s non-negative. Let
r, s, and a all be even. Then

ψe(r,s+2,a, t) =

 ψe(r,s,a, t) if a | rt +s+c, 0≤ c
2 ≤

a
2−2,

ψe(r,s,a, t)+ r if a | rt +s+c, c
2 =−1.

Proof. By Lemma 13

ψe(r,s+2,a, t) =
r
a
(tr +(s+2)+c′)+(t−1)r

wherea | tr +(s+2)+c′ and−1≤ c′
2 ≤

a
2−2. Putc∗ = c′+2. Then

ψe(r,s+2,a, t) =
r
a
(tr +(s+2)+(c∗−2))+(t−1)r

=
r
a
(tr +s+c∗)+(t−1)r

wherea | tr + s+ c∗ and 0≤ c∗
2 ≤ a

2 −1. If 0≤ c∗
2 ≤ a

2 −2, then it follows from
Lemma 13 that

ψe(r,s+2,a, t) = ψe(r,s,a, t).

If c∗
2 = a

2−1, then putc+ = c∗−a. Then

ψe(r,s+2,a, t) =
r
a
(tr +s+c+ +a)+(t−1)r

=
r
a
(tr +s+c+)+(t−1)r + r

wherea | tr +s+c+ and c+

2 =−1. Therefore, by Lemma 13, in this case we have

ψe(r,s+2,a, t) = ψe(r,s,a, t)+ r.

By definition, whenr,s,a are all even, ifd is EVEN andd ≥ ψe(r,s,a, t)
then each(d,d + s)-pseudograph has an(r, r + a)-factorization intox (r, r + a)-
factors fort different values ofx, but ψ(r,s,a, t) has the EXTRA property that if
d is ODD andd ≥ ψ(r,s,a, t) then each(d,d + s)-pseudograph has an(r, r + a)-
factorization intox (r, r +a)-factors fort different values ofx. Thus it is clear that
ψ(r,s,a, t) ≥ ψe(r,s,a, t)− 1 whenr,s,a are all even. We note that Theorem 11

11



tells us that, except whenc2 6=−1, ψ(r,s,a, t) = ψe(r,s,a, t), but whenc
2 =−1 then

ψ(r,s,a, t) = ψe(r,s,a, t)+ r.

Proof of Theorem 11.If d≥ψe(r,s+2,a, t) and ifd is even, then any(d,d+s+2)-
pseudograph has an(r, r + a)-factorization withx (r, r + a)-factors fort different
values ofx. If d ≥ ψe(r,s+ 2,a, t) andd is odd, thend−1 is even and any(d−
1,(d− 1) + s+ 2)-pseudograph is a(d′,d′ + s+ 2)-pseudograph for some even
d′ ≥ ψe(r,s+2,a, t), and so has an(r, r +a)-factorization withx (r, r +a)-factors
for t different values ofx. Thusψ(r,s,a, t)≤ ψe(r,s+2,a, t).

Now let d = ψe(r,s+ 2,a, t)− 1 and consider a pseudographG = G1∪G2,
whereV(G1)∩V(G2) = /0, G1 is a regular pseudograph of degreed + s, andG2

is a regular pseudograph of degreed. Any (r, r +a)-factorization ofG contains an
(r, r +a)-factorization ofG1 and an(r, r +a)-factorization ofG2.

By Lemma 14,ψe(r,s+2,a, t) = ψe(r,s,a, t) or ψe(r,s,a, t)+ r. Suppose first
that ψe(r,s+ 2,a, t) = ψe(r,s,a, t). Let a | rt + s+ c where, in accordance with
Lemma 14, 0≤ c

2 ≤
a
2−2. ConsiderG1. Then

d
r

=
1
a
(tr +s+c)+(t−1)− 1

r
,

so the number of(r, r + a)-factors ofG1 (and thereforeG) could have is at most
1
a(tr +s+c)+(t−2). Now considerG2. Then

d+s
r +a

=
1

(r +a)
1
a
(tr2 +sr+cr)+

(t−1)r
r +a

− 1
r +a

+
s

r +a

=
1

(r +a)

(
tr(r +a)

a
+

s(r +a)
a

+
c(r +a)

a
− r−1−c

)
=

1
a
(tr +s+c)− r +1+c

r +a
.

Since 0≤ c
2 ≤

a
2−2, it follows thatr +1+c< r +aso that

r +1+c
r +a

< 1. Therefore

the number of(r, r +a)-factors in any(r, r +a)-factorization is at least1a(tr + s+
c). Therefore the number of different values ofx for which G has an(r, r + a)-
factorization withx (r, r +a)-factors is at mostt−1 < t.

Now suppose thatψe(r,s+ 2,a, t) = ψe(r,s,a, t)+ r. Let a | rt + s+ c where,
again in accordance with Lemma 14,c

2 =−1. Then

d
r

=
1
a
(tr +s+c)+ t− 1

r
,

so the number of(r, r + a)-factorsG1 could have is at most1a(tr + s+ c)+ t −1.
Now considerG2. Then

d+s
r +a

=
1
a
(tr +s+c)− 1+c

r +a

12



wherec
2 =−1. Then 1+c =−1 so−1+c

r+a > 0. Therefore the number of(r, r +a)-
factorsG2 could have is at least1a(tr +s+c)+1. Therefore the number of different
values ofx for which G has an(r, r +a)-factorization withx (r, r +a)-factors is at
mostt−1 < t. Thus

ψ(r,s,a, t)≥ ψe(r,s+2,a, t).

Consequently
ψ(r,s,a, t) = ψe(r,s+2,a, t),

so, by Lemma 14,

ψ(r,s,a, t) =
{

ψe(r,s,a, t) if a | rt +s+c, 0≤ c
2 ≤

a
2−2,

ψe(r,s,a, t)+ r if a | rt +s+c, c
2 =−1.

Therefore, by Lemma 13,

ψ(r,s,a, t) =
{ r

a(tr +s+c)+(t−1)r if a | rt +s+c, 0≤ c
2 ≤

a
2−2,

r
a(tr +s+c)+(t−1)r + r if a | rt +s+c, c

2 =−1.

=
r
a
(tr +s+c)+(t−1)r if a | rt +s+c, 0≤ c

2
≤ a

2
−1.

�

Corollary 15. Let r,s,a, t be integers with r,a, t all positive and s non-negative. Let
r, s and a be even. Then

ψ(r,s,a, t) = ψe(r,s,a, t).

We note that Theorem 11 can be re-expressed in the following way.

Theorem 11′. Let r,s,a, t be integers with r,a, t positive and s non-negative. Let
r,s,a be even. Then

ψ(r,s,a, t) = r

⌈
tr +s

a

⌉
+(t−1)r.

The remaining task in this section is to remove from Theorem 11 (or 11′) the
restriction thats be even. We note the following lemmas.

Lemma 16. Let r,s,a, t be integers with r,a, t positive and s non-negative. Then

ψ(r,s,a, t)≤ ψ(r,s+1,a, t).

Proof. Let d≥ ψ(r,s+1,a, t). Any (d,d+s)-pseudograph is also a(d,d+s+1)-
pseudograph. Thus if all(d,d+s+1)-pseudographs have(r, r +a)-factorizations
with x (r, r +a)-factors for at leastt values ofx, then so do all(d,d+s)-pseudographs.
Thereforeψ(r,s+1,a, t)≥ ψ(r,s,a, t).
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Lemma 17. Let r,s,a, t be integers with r,a, t all positive and s non-negative. Let
r,a,s be even. If ⌈

rt +s
a

⌉
=

⌈
rt +s+2

a

⌉
thenψ(r,s,a, t) = ψ(r,s+1,a, t) = ψ(r,s+2,a, t).

Proof. By Lemma 16,ψ(r,s,a, t)≤ ψ(r,s+1,a, t)≤ ψ(r,s+2,a, t). By Theorem

11 (or 11′), since

⌈
rt +s

a

⌉
=

⌈
rt +s+2

a

⌉
, it follows that ψ(r,s,a, t) = ψ(r,s+

2,a, t), so Lemma 17 follows.

It remains to consider the case when
⌈

rt+s
a

⌉
<

⌈
rt+s+2

a

⌉
. Sincer, s anda are

even, this occurs whena | rt +s. Thus we need to evaluateψ(r,s+1,a, t) whenr
anda are even,s is odd anda | rt +s−1. We do this in Lemma 18.

Lemma 18. Let r,s,a, t be integers with r,a, t positive and s non-negative. Let r,a
be even and s be odd, and let a| rt +s−1. Then

ψ(r,s,a, t) = r

(
rt +s−1

a

)
+(t−1)r.

Proof. Let d∗ = r
(

rt+s−1
a

)
+(t−1)r. First note that

ψ(r,s,a, t) ≥ ψ(r,s−1,a, t) by Lemma 16,
= ψe(r,s−1,a, t) by Corollary 15,
= r

(
rt+s−1

a

)
+(t−1)r by Lemma 13 withc = 0,

= d∗.

Next notice that, by Lemma 13 (withc =−2),

ψe(r,s+1,a, t) =
r
a
(tr +(s+1)−2)+(t−1)r,

anda | tr +(s+1)−2.
Thus ψe(r,s+ 1,a, t) = d∗. Then, for d even, d ≥ d∗, any (d,d + s+ 1)-

pseudograph has an(r, r + a)-factorization intox (r, r + a)-factors fort different
values ofx; therefore any((d+1),(d+1)+s)-pseudograph has this property too
(since any((d+1),(d+1)+s)-pseudograph is a(d,d+s+1)-pseudograph), and
any (d,d + s)-pseudograph has this property (since any(d,d + s)-pseudograph is
a (d,d + s+ 1)-pseudograph). Therefore, for any integerd ≥ d∗, any (d,d + s)-
pseudograph has an(r, r + a)-factorization intox (r, r + a)-factors fort different
values ofx. Thusd∗ ≥ ψ(r,s,a, t), and so

ψ(r,s,a, t) =
r
a
(tr +s−1)+(t−1)r

whena | tr +s−1.

To sum up our knowledge ofψ(r,s,a, t) whenr anda are even, we have:

14



Theorem 19. Let r,s,a, t be integers with r,a, t positive and s non-negative. Let r
and a be even. Then

ψ(r,s,a, t) = r

⌈
rt +s−1

a

⌉
+(t−1)r.

Proof. This follows from Theorem 11′, Lemma 17 and Lemma 18.

4 Bounds for ψ(r,s,a, t) when r, a are not both even

Rather surprisingly, we can find reasonable bounds forψ(r,s,a, t) whenr anda are
not both even.

We first note the following lemmas.

Lemma 20. Letρ, r,s,a,α, t be integers withρ, r,a,α, t positive and s non-negative.
Let ρ ≤ r ≤ r +a≤ ρ+α. Then

ψ(r,s,a, t)≥ ψ(ρ,s,α, t).

Proof. Let d≥ ψ(r,s,a, t). Any (r, r +a)-factor of a pseudograph is also a(ρ,ρ+
α)-factor. Thus if all(d,d+s)-pseudographs have an(r, r +a)-factorization intox
(r, r +a)-factors for at leastt different values ofx, then all(d,d+s)-pseudographs
have(ρ,ρ +α)-factorization intox (ρ,ρ +α)-factors for at leastt different values
of x. Thereforeψ(r,s,a, t)≥ ψ(ρ,s,α, t).

Two special cases of Lemma 20 are of particular importance.

Lemma 21. Let r,s,a, t be integers with r,a, t positive and s non-negative. Then

(i) ψ(r,s,a, t)≥ ψ(r,s,a+1, t).

(ii) ψ(r,s,a, t)≤ ψ(r +1,s,a−1, t).

Proof. (i) corresponds to takingρ = r andα = a+1 in Lemma 20, and thenρ = r
andr +a≤ r +(a+1) = ρ+α.

(ii) corresponds to takingρ = r + 1 andα = a− 1 in Lemma 20, and then
ρ = r +1, r +a = (r +1)+(a−1) = ρ+α.

Next we boundψ(r,s,a, t) whenr anda are both odd.

Lemma 22. Let r,s,a, t be integers with r, t positive, a≥ 3 and s non-negative. Let
r,a be odd and s be even, let(r +1)t +s 6≡ 2 (moda−1). Then

ψ(r +1,s,a−1, t)−1≤ ψ(r,s,a, t)≤ ψ(r +1,s,a−1, t).

Note that, asr +1 anda−1 are both even,ψ(r,s,a, t) is evaluated in Theorem
19.

15



Proof. By Lemma 21,ψ(r,s,a, t)≤ ψ(r +1,s,a−1, t).
To prove the other inequality, letd = ψ(r +1,s,a−1, t)−2, so thatd is even.

Let F be the(d,d+ s)-pseudograph with two components,G1 andG2, whereG1

has one vertex on which are placedd
2 loops, andG2 has one vertex on which are

placedd+s
2 loops. Sincer anda are both odd and all the edges ofG are in fact

loops, any(r, r + a)-factor of G is actually an(r + 1, r + a)-factor, i.e. an((r +
1),(r +1)+(a−1))-factor.

By Lemma 1, it follows that for any((r +1),(r +1)+(a−1))-factorization of
G into x ((r +1),(r +1)+(a−1))-factors,

d+s
(r +1)+(a−1)

≤ x≤ d
r +1

.

Sinced = ψ(r +1,s,a−1, t)−2, it follows from Theorem 19 (sinces is even) that

d = (r +1)
⌈

t(r +1)+s
a−1

⌉
+(t−1)(r +1)−2,

so
d

r +1
=

⌈
t(r +1)+s

a−1

⌉
+(t−1)− 2

r +1
.

Therefore

x≤
⌈

t(r +1)+s
a−1

⌉
+(t−2).

We also have that

d+s= (r +1)
⌈

t(r +1)+s
a−1

⌉
+(t−1)(r +1)+s−2

so that

d+s=
(r +1)
(a−1)

(
t(r +1)+s+c

)
+(t−1)(r +1)+s−2

where 0≤ c
2 ≤

a−1
2 −1 anda−1 | (r +1)t +s+c.

After some calculation, we find that

d+s
(r +1)+(a−1)

=
⌈

t(r +1)+s
a−1

⌉
− r +c+3

r +a
.

Since 0≤ c
2 ≤

a−1
2 −1 and(r +1)t +s 6≡ 2 (moda−1), it follows thatr +c+3 <

r +a, and so

x≥
⌈

t(r +1)+s
a−1

⌉
.

There are therefore onlyt−1 values thatx can take, so there do not existt values
of x for whichG has an((r +1),(r +1)+(a−1))-factorization intox ((r +1),(r +
1)+(a−1))-factors. Therefore there do not existt values ofx for whichG has an
(r, r +a)-factorization intox (r, r +a)-factors. It follows thatd < ψ(r,s,a, t).
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We now deduce thatψ(r +1,s,a−1, t)−1 < ψ(r,s,a, t), so that

ψ(r +1,s,a−1, t)−1≤ ψ(r,s,a, t)≤ ψ(r +1,s,a−1, t).

The missing case of Lemma 22, when(r +1)t +s≡ 2 (moda−1), is covered
less well by Lemma 23:

Lemma 23. Let r,s,a, t be integers with r, t positive, a≥ 3 and s≥ 2. Let r,a be
odd and(r +1)t +s≡ 2 (moda−1) (so that s is even). Then

ψ(r +1,s−2,a−1, t)−1≤ ψ(r,s,a, t)≤ ψ(r +1,s−2,a−1, t)+ r.

Note thatψ(r +1,s−2,a−1, t) can be written down explicitly using Theorem
19.

Proof.

ψ(r +1,s−2,a−1, t)−1
≤ ψ(r,s−2,a, t) by Lemma 22,
≤ ψ(r,s,a, t) by Lemma 16,
≤ ψ(r,s+2,a, t) by Lemma 16 again,
≤ ψ(r +1,s+2,a−1, t) by Lemma 22,
= ψ(r +1,s−2,a−1, t)+ r by Theorem 19.

Theorem 24. Let r,s,a, t be integers with r, t positive, a≥ 3 and s non-negative.
Let r,a be odd. Then

ψ(r +1,s,a−1, t)−1≤ ψ(r,s,a, t)≤ ψ(r +1,s,a−1, t)

if (r +1)t +s 6≡ 1,2 (moda−1), and for i= 1 or 2 and s≥ i, then

ψ(r +1,s− i,a−1, t)−1≤ ψ(r,s,a, t)≤ ψ(r +1,s− i,a−1, t)+ r

if (r +1)t +s≡ i (moda−1).

Note that the bounding terms are given explicitly in each case in Theorem 19.

Proof. If (r +1)t +s 6≡ 2 (moda−1) ands is even, then the theorem follows from
Lemma 22.

If (r +1)t +s 6≡ 1 (moda−1) ands is odd, then

ψ(r +1,s,a−1, t)−1
= ψ(r +1,s−1,a−1, t)−1 by Theorem 19 since(r +1)t +s−1 6≡ 1 (moda−1),
≤ ψ(r,s−1,a, t) by Lemma 22 since(r +1)t +(s−1) 6≡ 2 (moda−1),
≤ ψ(r,s,a, t) by Lemma 16,
≤ ψ(r,s+1,a, t) by Lemma 16 again,
≤ ψ(r +1,s+1,a−1, t) by Lemma 22 since(r +1)t +(s−1) 6≡ 2 (moda−1),
= ψ(r +1,s,a−1, t) by Theorem 19 since(r +1)t +(s+1)−1 6≡ 1 (moda−1),

i.e. (r +1)t +s 6≡ 1 (moda−1).
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If (r +1)t +s≡ 1 (moda−1) thens is odd and

ψ(r +1,s−1,a−1, t)−1
≤ ψ(r,s−1,a, t) by Lemma 22 since(r +1)t +(s−1) 6≡ 2 (moda−1),
≤ ψ(r,s,a, t) by Lemma 16,
≤ ψ(r,s+1,a, t) by Lemma 16 again,
≤ ψ(r +1,s−1,a−1, r)+ r by Lemma 23 since(r +1)t +(s+1)≡ 2 (moda−1).

If (r +1)t +s≡ 2 (moda−1) the theorem follows from Lemma 23.

Our results and proofs in the remaining cases, when one ofr anda is even and
the other is odd, are very similar to the case when bothr anda are odd, and so we
just give brief accounts, accounts which may be filled out by imitating the earlier
proofs in obvious ways.

We look next at the case whenr is even anda is odd.

Lemma 25. Let r,s,a, t be integers with r, t positive, a≥ 3 and s non-negative. Let
r and s be even and a be odd. Let rt+s 6≡ 2 (mod a−1). Then

ψ(r,s,a−1, t)−1≤ ψ(r,s,a, t)≤ ψ(r,s,a−1, t).

Proof. By Lemma 21,ψ(r,s,a, t)≤ ψ(r,s,a−1, t).
To prove the other inequality, letd = ψ(r,s,a−1, t)−2, so thatd is even. Let

G be the(d,d+ s)-pseudograph with two components,G1 andG2, whereG1 has
one vertex on which are placedd

2 loops, andG2 has one vertex on which are placed
d+s

2 loops. Sincer is even anda is odd, any(r, r + a)-factor of G is actually an
(r, r +(a−1))-factor.

By Lemma 1, it follows that, for any(r, r +(a−1))-factorization ofG into x
(r, r +(a−1))-factors,

d+s
r +(a−1)

≤ x≤ d
r +1

.

Using Theorem 19 we find that

d
r

=
⌈

tr +s
a−1

⌉
+ t−1− 2

r

so that

x≤
⌈

tr +s
a−1

⌉
+ t−2.

We also find by arguing as in the proof of Lemma 22 that, for some even integerc
such that 0≤ c

2 ≤
a−1

2 −1 anda−1 | rt +s+c,

d+s
r +(a−1)

=
⌈

tr +s
a−1

⌉
− c+ r +2

r +(a−1)
.
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But c= a−3 if and only if rt +s≡ 2 (moda−1) so that, sincert +s 6≡ 2 (moda−
1),

x≥
⌈

tr +s
a−1

⌉
,

and so there are at mostt−1 possible values ofx.
Therefore there do not existt values ofx for whichGhas an(r, r +a)-factorization

into x (r, r +a)-factors. Therefore

d < ψ(r,s,a, t)

and so
ψ(r,s,a−1, t)−1≤ ψ(r,s,a, t).

The missing case of Lemma 25, whenrt + s≡ 2 (moda− 1) is covered in
Lemma 26.

Lemma 26. Let r,s,a, t be integers with r, t positive, a≥ 3 and s≥ 2. Let r be even
and rt+s≡ 2 (mod a−1) (so that s is even). Then

ψ(r,s−2,a−1, t)−1≤ ψ(r,s,a, t)≤ ψ(r,s−2,a−1, t)+ r.

Proof. Similar to the proof of Lemma 23, but using Lemma 25 instead of Lemma
22.

Theorem 27. Let r,s,a, t be integers with r, t positive, a≥ 3 and s non-negative.
Let r be even and a be odd. Then

ψ(r,s,a−1, t)−1≤ ψ(r,s,a, t)≤ ψ(r,s,a−1, t)

if rt +s 6≡ 1,2 (mod a−1) and, for i= 1 or 2 and s≥ i, then

ψ(r,s− i,a−1, t)−1≤ ψ(r,s,a, t)≤ ψ(r,s− i,a−1, t)+ r

if rt +s≡ i (mod a−1).

The bounding terms in each case are given explicitly by Theorem 19.

Proof. The proof follows the proof of Theorem 24, using Lemmas 25 and 26 in-
stead of Lemmas 22 and 23.

Finally we consider the case whenr is odd anda is even.

Lemma 28. Let r,s,a, t be integers with r, t positive, a≥ 3 and s non-negative. Let
r be odd and a,s be even. Let(r +1)t +s 6≡ 2 (mod a−2). Then

ψ(r +1,s,a−2, t)−1≤ ψ(r,s,a, t)≤ ψ(r +1,s,a−2, t).
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Proof. By Lemma 21,

ψ(r,s,a, t)≤ ψ(r +1,s,a−1, t)≤ ψ(r +1,s,a−2, t).

To prove the other inequality, letd = ψ(r +1,s,a−2, t)−2. Thend is even. Let
G be the(d,d+ s)-pseudograph with two components,G1 andG2, whereG1 has
one vertex on which are placedd

2 loops, andG2 has one vertex on which are placed
d+s

2 loops. Sincer is even anda is odd, any(r, r + a)-factor of G is actually an
((r +1),(r +1)+(a−2))-factor.

By Lemma 1, it follows that, for any((r + 1),(r + 1)+ (a−2))-factorization
into x ((r +1),(r +1)+(a−2))-factors,

d+s
(r +1)+(a−2)

≤ x≤ d
r +1

.

Using Theorem 19, it follows that

x≤
⌈

t(r +1)+s
a−2

⌉
+ t−2.

It also follows (by arguing as in Lemmas 22 and 25) that, for some even integerc
such that 0≤ c

2 ≤
a−2

2 −1 and(a−2) | t(r +1)+s+c,

d+s
(r +1)+(a−2)

=
⌈

t(r +1)+s
a−2

⌉
− (r +1)+(c+2)

(r +1)+(a−2)
.

But c= a−4 if and only if(r +1)t +s≡ 2 (moda−2) so that, since(r +1)t +s 6≡ 2
(moda−2),

x≥
⌈

t(r +1)+s
a−2

⌉
.

Therefore there do not existt values ofx for whichG has an(r, r +a)-factorization
into x (r, r +a)-factors. Therefored < ψ(r,s,a, t) and soψ(r +1,s,a−2, t)−1≤
ψ(r,s,a, t).

The case when(r +1)t +s≡ 2 (moda−2), missed by Lemma 28, is covered
by Lemma 29.

Lemma 29. Let r,s,a, t be integers with r, t positive, a≥ 3 and s≥ 2. Let r be odd,
a be even, and(r +1)t +s≡ 2 (mod a−2) (so s is even). Then

ψ(r +1,s−2,a−2, t)−1≤ ψ(r,s,a, t)≤ ψ(r +1,s−2,a−2, t)+ r.

Proof. This is similar to the proof of Lemma 23, using Lemma 28 instead of
Lemma 22.
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Theorem 30. Let r,s,a, t be integers with r, t positive, a≥ 3 and s non-negative.
Let r be odd and a be even. Then

ψ(r +1,s,a−2, t)−1≤ ψ(r,s,a, t)≤ ψ(r +1,s,a−2, t)

if (r +1)t +s 6≡ 1,2 (mod a−2), and for i= 1,2 and s≥ i,

ψ(r +1,s− i,a−2, t)−1≤ ψ(r,s,a, t)≤ ψ(r +1,s− i,a−s, t)+ r

if (r +1)t +s≡ i (mod a−2).

Proof. The proof follows the proof of Theorem 24, using Lemmas 28 and 29 in-
stead of Lemmas 22 and 23.

5 Multigraphs and simple graphs

In this section we examine the implications of our results on pseudographs have
for multigraphs and simple graphs.

First we define analogues of the functionψ(r,s,a, t). For positive integersr, t
and non-negative integersa,s, let σ(r,s,a, t) be the least integer such that, for each
integerd ≥ σ(r,s,a, t), each(d,d+ s)-simple graph has an(r, r +a)-factorization
with x (r, r +a)-factors for at leastt values ofx.

The functionσ(r,s,1, t) was evaluated in [8], and shown to be given by the
formula in:

Theorem 31. For integers r, t ≥ 1 and s≥ 0,

σ(r,s,1, t) =


r(rt +s)+(t−1)r if r is even,0≤ s≤ 1,
r(rt +s)+(t−1)r +1 if r is odd,0≤ s≤ 1,
r(rt +s)+(t−1)r + r +1 if s≥ 2.

For positive integersr, t and non-negative integersa,s, letµ(r,s,a, t) be the least
integer such that, for each integerd≥ µ(r,s,a, t), each(d,d+s)-multigraph has an
(r, r +a)-factorization withx (r, r +a)-factors for at leastt values ofx.

The numbersµ(r,0,1,1) andµ(r,1,1,1) were investigated in [6] where bounds
were obtained and, for some values ofr, the number was determined. The most
striking points arising from this are:

(a) if r is odd thenµ(r,0,1,1) = σ(r,0,1,1) and, although this is not proven, it
seems very likely thatµ(r,1,1,1) = σ(r,1,1,1);

(b) if r is even, then, fors∈{0,1}, µ(r,s,1,1) is at least approximately32σ(r,s,1,1).

Kano [10] and Cai [3] also studied(r, r +a)-factorizations of(d,d+s)-multigraphs;
their approach was quite a lot different from ours.

The straightforward relationships between the functionsσ(r,s,a, t), µ(r,s,a, t)
andψ(r,s,a, t) are given in the next two theorems.
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Theorem 32. Let r,s,a, t be integers with r, t,a positive and s non-negative. Then

σ(r,s,a, t)≤ µ(r,s,a, t)≤ ψ(r,s,a, t).

Proof. This follows from the fact that each simple graph is a multigraph, and each
multigraph is a pseudograph.

Theorem 33. Let r,a, t be positive integers and s a non-negative integer. Let r and
a be even. Then

σ(r,s,a, t) = µ(r,s,a, t) = ψ(r,s,a, t) = r

⌈
tr +s−1

a

⌉
+(t−1)r.

Proof. We refer back to the remark after the statement of Theorem 11. The whole
of the development from Theorem 11 up to Theorem 19 inclusive could apply
equally well if the graphs considered were restricted to being multigraphs, or to
being simple graphs. Thus the theorem follows from Theorem 19 (and its ana-
logues for simple graphs and multigraphs).

Theorem 33 enables us to obtain convenient bounds forσ(r,s,a, t) andµ(r,s,a, t)
in the case whenr andr +a are not both even.

Theorem 34. Let r,s,a, t be integers with r and a both odd, r,a≥ 3, s≥ 0, t ≥ 1.
Then

ψ(r−1,s,a+1, t)≤ σ(r,s,a, t)≤ µ(r,s,a, t)≤ ψ(r +1,s,a−1, t).

Note thatψ(r −1,s,a+1, t) in Theorem 34 is given explicitly in Theorem 19
(or Theorem 33).

Proof. By Theorem 33,

ψ(r−1,s,a+1, t) = σ(r−1,s,a+1, t).

By the same argument as was used in the proof of Lemma 21, it follows that

σ(r−1,s,a+1, t)≤ σ(r,s,a, t)≤ σ(r +1,s,a−1, t).

Then, by Theorem 33 again,

σ(r +1,s,a−1, t) = ψ(r +1,s,a−1, t).

Following the same argument forµ(r,s,a, t) we can obtain:

ψ(r−1,s,a+1, t)≤ µ(r,s,a, t)≤ ψ(r +1,s,a−1, t).

Finally we note that, by Theorem 32,σ(r,s,a, t)≤ µ(r,s,a, t).
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Theorem 35. Let r,s,a, t be integers with r even and a odd. Let r≥ 1, s≥ 0, a≥ 3,
t ≥ 1. Then

ψ(r,s,a+1, t)≤ σ(r,s,a, t)≤ µ(r,s,a, t)≤ ψ(r,s,a−1, t).

Proof. This follows similarly since, as in Lemma 21,

σ(r,s,a+1, t)≤ σ(r,s,a, t)≤ σ(r,s,a−1, t).

Theorem 36. Let r,s,a, t be integers with r odd and a even. Let r≥ 3, s≥ 0, a≥ 4,
t ≥ 1. Then

ψ(r−1,s,a+2, t)≤ σ(r,s,a, t)≤ µ(r,s,a, t)≤ ψ(r +1,s,a−2, t).

Proof. The proof is similar:

ψ(r−1,s,a+2, t) = σ(r−1,s,a+2, t)≤ σ(r−1,s,a+1, t)≤ σ(r,s,a, t)≤ ·· ·

· · · ≤ µ(r,s,a, t)≤ µ(r +1,s,a−1, t)≤ µ(r +1,s,a−2, t) = ψ(r +1,s,a−2, t).

Of course, in Theorems 34–36, the upper and lower bounds are given explicitly
in Theorem 19 (or Theorem 33).

6 Further comments

Although the bounds for pseudographs we have found are quite good, bounds for
multigraphs seem to be harder to obtain, and interest in them seems likely to con-
tinue. Multigraph bounds were found by Cai [3] and, as he showed, in some ways
these are best possible, but they are not always best possible (see [6] for the case
whena = 1); they are also expressed in a different way from our results. In The-
orem 37 we collect together some bounds for multigraphs which may be readily
gleaned from our results. We just give the bounds fort = 1, since this is of primary
interest, but the bounds whent > 1 follow just as easily.

Theorem 37. Let r,s,a be integers with r,a positive and s non-negative.

(i) If r and a are even then

µ(r,s,a,1) = r

⌈
r +s−1

a

⌉
.

(ii) If r and a are odd, r≥ 3, a≥ 3, then

(r−1)
⌈

r−1+s
a+1

⌉
≤ µ(r,s,a,1)≤ (r +1)

⌈
r +1+s

a−1

⌉
.
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(iii) If r is even and a is odd, a≥ 3, then

r

⌈
r +s
a+1

⌉
≤ µ(r,s,a,1)≤ r

⌈
r +s
a−1

⌉
.

(iv) If r is odd and a is even, r≥ 3, a≥ 4, then

(r−1)
⌈

r−1+s
a+2

⌉
≤ µ(r,s,a,1)≤ (r +1)

⌈
r +1+s

a−2

⌉
.

Proof. (i) follows from Theorem 33.

(ii) follows from Theorem 33 and the fact that the analogue of Lemma 21(ii) for
µ(r,s,a, t) is true (it may be established by the same argument).

(iii) follows similarly, using the corresponding analogue to Lemma 21(i) for
µ(r,s,a, t).

(iv) follows similarly, using the analogues of Lemma 21(i) and 21(ii) as follows:

µ(r−1,s,a+2,1)≤ µ(r−1,s,a+1,1)≤ µ(r,s,a,1), and

µ(r,s,a,1)≤ µ(r +1,s,a−1,1)≤ µ(r +1,s,a−2,1).
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